
IoT Rapid Prototyping Laboratory Setup*

KIMMO KARVINEN
Department of Automation and Systems Technology, School of Electrical Engineering, Aalto University, Maarintie 8, Espoo, Finland.

ORCID 0000-0003-3946-4163. E-mail: kimmo.karvinen@iki.fi

TERO KARVINEN
Westminster Business School, the University of Westminster, 35 Marylebone Road, London NW1 5LS, United Kingdom.

E-mail: tero.karvinen@iki.fi

Even novice engineers and non-technical students can design and build an Internet of Things (IoT) prototype in four days.

Wepresent a setup for rapid IoTprototyping in a classroom, identify necessary skills and combine these to aworkshop that

allows students to turn their ideas into prototypes. Our approach enables fast prototyping cycle, using a common andwell-

established development board and a computer. Arduino Uno is used for device prototyping and a Python program

running on the same computer handles the needed Internet communications. A web server handles device and web client

connectivity, logging and data monitoring. The method makes it possible to learn the needed basic skills in manageable

steps, allowing students to focus on the actual prototype instead of struggling with the wireless and Internet

communication problems. After the prototyping phase, the device can be ported to inexpensive and small ESP8266

basedmicrocontroller. Compared to developing IoTprototypes directlywithESP8266, the setuppresented is considerably

faster. The whole process is based on free software tools which provides a possibility to utilize prototypes commercially,

without a risk of a third party changing or discontinuing services. We arranged an experimental four-day workshop for

university students (n = 19) from diverse backgrounds and varying levels of technical skills. All teams successfully built a

working prototype based on their own ideas. Student self-assessment of programming skills was noticeably improved

during the course.We later repeated the experiment with another group (n = 27) in a university of applied sciences, getting

similar results. Our results indicate that this method is effective for learning IoT prototyping skills in a short time.

Keywords: embedded systems; ESP8266; free software; Internet of Things (IoT); rapid prototyping; novice engineering education

1. Introduction

The Internet of Things (IoT) is expected to change

the way devices are connected and embedded into

environment. The influence of IoT will cover vast

amount of different areas such as education, med-

ical, transportation and countless others [1]. Cloud
computing, existing networks and wireless net-

works already today provide technical foundation

for IoT services and devices, but IoT must evolve to

everyday objects and become an integral part of our

environment to redeem its expectations [2]. This

change is not in distant future. For example, in

2015 Gartner estimated that there will be 13.5

billion connected things in use in the consumer
sector in 2020 [3].

Prototypes are often created to evaluate and test

new ideas and designs. Prototypes can reveal design

weaknesses, clarify technical requirements and give

a chance to try out innovations to ensure they are fit

for the designed purpose. Prototyping is usually an

iterative process where the prototype is reviewed

and modified repeatedly. Rapid prototyping is a
process where a trial version of the design is created

in an early stage of the development life cycle. [4] It

allows a ‘‘test drive’’ of an idea with an acceptable

possibility to radically change the approach or even

throw away infeasible design. Rapid prototyping is

also suitable for teaching and learning the use of

new technology in a meaningful context as pre-

sented in this paper.
The use of prototypes [5] and related approaches

such as problem, design and project oriented

approaches [6] have been used in engineering educa-

tion. Based on student self-evaluation surveys, these

approaches have been successful [5, 6]. In the work-

shop presented in this paper, the results from

student self-evaluations are supported by the func-

tional prototypes successfully built in each student
group.

In this paper, we define Internet of Things (IoT)

as embedded systems that communicate over the

Internet.Multiple definitions of IoT can be found in

literature, showing interest in this area [7]. Some

definitions and visions of IoT emphasize the net-

work aspect, others concentrate on the objects [7].

Our focus is on a setup that allows students to
turn their own IoT innovations into working pro-

totypes. This setup can be taught in a four-day-

workshop. Learning IoTprototyping is divided into

three manageable sections, allowing building IoT

deviceswithout need for server programming. Setup

utilized enables fast prototyping cycle using wired

environment combining desktop computer to a

hobby development platform. Fast and beginner
friendly workflow is suitable for rapid prototyping

* Accepted 11 October 2017. 263

International Journal of Engineering Education Vol. 34, No. 1, pp. 263–272, 2018 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2018 TEMPUS Publications.

and makes novice and interdisciplinary IoT courses

possible. The prototype can be easily developed to

the next stage by turning it into a wireless, small and

battery operated ESP8266 device. Process of proto-

typing in wired, steady environment without wire-

less and Internet communication problems provides
an effective way for developing programs for

ESP8266. Code created will work directly with

ESP8266 microprocessor just by replacing serial

read/write functions with WLAN functions. The

whole process is based on free software and open

source tools which makes it suitable for further

development and commercial projects.

This paper makes three key contributions:

1. Approach that enables novice students to turn
their ideas into working IoT prototypes during

a four-day-workshop. For results of case work-

shop, see chapter 5.

2. Defining necessary basic skills for learning and

prototyping IoT. For summary of skills, see

Fig. 2.

3. Open source setup for IoT prototyping utilizing

a development board and a computer.

Findings can be applied with students ranging

from novices to advanced students. With novices,
the focus should be on learning embedded systems

and building a simple IoT device, while advanced

students can benefit from effective workflow and

short feedback loop.

Presented method was piloted in four-day-work-

shop in the University of Lapland with 19 art

students. In addition to the case workshop, the

experiment was repeated with another group in
Haaga-Helia University of Applied Sciences.

2. Teaching IoT embedded system
prototyping

IoT devices are embedded systems with input, data

processing and output. In this regard, IoT device is

like any other embedded system [8]. Unlike tradi-

tional embedded systems, IoT devices are not lim-

ited to operate according to input from their sensors

and interacting with their outputs. By using existing
Internet standards, IoT devices can communicate

with each other around the world and use cloud

services to collect and analyze data as shown in

Fig. 1 [2]. Without sensors for input and output

components, such as actuators, traditional

embedded systemwould beof limited use.However,

IoT devices can be useful if either input or output is

connected to cloud. This does not exclude local
sensors and outputs, but, by definition, an

embedded system is not an IoT device without the

ability to input or output to the cloud, over the

Internet.

We present that teaching an IoT device structure

can be divided into embedded system, embedded

systemand cloud communication and clouddeploy-

ment and development. This structure is presented
in Fig. 2. As most students in our case example

workshop had limited knowledge about embedded

systems, themain part of the first day was dedicated

to learning the basics. Using a hobby development

platformand focusing only on crucial skills, the very

basic embedded system skills can be taught in a one-

day-workshop, even for students with limited tech-

nical knowledge [9]. The agenda of the workshop is
presented in Table 1.

The most central basic skills needed to build a

basic embedded system and to create a foundation

for understanding IoT devices are shown in Fig. 2.

Kimmo Karvinen and Tero Karvinen264

Fig. 1. Structure of an IoT device.

Table 1.Workshop agenda

Day 1
Technology, theory and
personal innovation

Day 2
Utilizing and publishing
results

Day 3
Debugging and Cloud
services

Day 4
Demoday

� Preliminary knowledge review

� Introduction to IoT

� Designing embedded system

� Designing IoT device

� Successful prototyping
process

� Group project plan

� Presenting project plan

� Serious results with easy
accessibility tools

� Documenting projects

� Publishing

� Building the group project

� Common problems and
solutions

� For advanced students: cloud
service deployment and
operation

� Building the group project

� Finalizing the prototype

� Building the group project

� Group project presentations

� Feedback

Students need to be able to use an IDE (integrated

development environment) and compile programs

for a development platform. Arduino Uno was

selected for a development platform for its popu-

larity and broad user base. The low cost and open

hardware havemade it a frequent choice for numer-
ous research and scientific projects [10]. Arduino is

also used for engineering education because of its

accessibility, adaptability and compatibility [10–

13]. Arduino is widely available from different

producers and resellers. In 2013, Arduino had

registered over 700,000 official boards [14]. As

both software and hardware of Arduino are open-

source, there is also an unknown number of non-
official boards by various manufacturers in sale.

Input, processing and output can be clarified by

combining sensors and output components with

code examples [9]. Deeper understanding of pro-

gramming is not a necessity at this point but in order

to utilize code examples and Internet resources,

students need to be able to understand the basic

program structure and syntax. Utilizing Arduino
IDE’s built-in serial monitor is necessary for debug-

ging as well as for understanding serial communica-

tion in the next phase.

When the concept of input, processing and

output is clear, moving from an embedded system

to an IoT device with cloud communication is

simple. Writing to cloud is similar to using any

output, but instead of outputting data to Arduino’s
pins, a value is written to the serial port. A proxy

program then transfers data to the server. Getting

input from the cloudworks the sameway. Instead of

using measurement from a sensor, data is received

from cloud by writing request to the serial port. The

technical details of the process are explained in the

next section.

The economic principle of prototyping proposed
by Lim et al states that: ‘‘The best prototype is the

one that, in the simplest and the most efficient way,

makes the possibilities and limitations of a design

idea visible andmeasurable’’ [15]. In the same spirit,

we aim to leave everything that is not absolutely

necessary out of the learning and prototyping pro-

cess. Server programming is not compulsory for

successful IoT prototyping. However, understand-
ing its operating principles is necessary in order to

understand how the communication works between

the device and the cloud. By limiting the internet

communication to passing floating point numbers,

we were able to develop a simple and generic

prototype for the server backend. The open source

server solution makes it possible to deploy cloud

software to any server or to develop its features
further.

The prerequisites for using the prototyping envir-

onment in desktop computers are quite moderate.

Each student computer equipped with Arduino

Uno needs to have Python 3 and Arduino IDE

installed. Needed software is free and open source.

In addition, a suitable selection of sensors, actua-

tors, LEDs, breadboards and jumper wires is

needed. The component assortment should be
diverse enough to allow students to realize their

innovations rather than building a device based on

available parts. In the case workshop, students were

encouraged to first define what kind of IoT device

they would like to build, and then guided on

component selection and realistic implementation.

During the workshop, students successfully used

three different operating systems: Linux, Windows
and OS X. The diversity of operating systems was

mandated by the diversity of university computers

and devices brought by the students.

3. Setup for prototyping

Embedded system is built on the Arduino platform,

a popular open source, free software hobby and

rapid prototyping platform. Our implementation

consisted of Arduino Uno development board, the

accompanying Arduino integrated development
environment and libraries. Components chosen

for implementation are listed in Table 2.

All student developed code runs in the embedded

system, Arduino. Arduino does not have an operat-

IoT Rapid Prototyping Laboratory Setup 265

Fig. 2. IoT prototype building basics.

ing system, so the only thing running is the code

written by the student. Being able to see all of
Arduino’s code on a single screenful makes it easy

for student to feel in control of the system.

Setup for prototyping is presented in Fig. 3. The

prototype is built with Arduino Uno which is

connected to a desktop computer running Arduino

IDE. The only cable needed is the USB cable

connecting Arduino to a computer, while all data

is written to serial port and read from the serial port
by a Python program running on the computer. By

limiting the number of physical components and

wires needed for the initial setup we were able to

reduce points of possible user error.

Arduino can send two kinds of GET requests:

send value or ask for value. All requests include an

API key, a secret string used in place of login name

and password. BotBookEspy, a Python serial
proxy, forwards requests from the Arduino to the

server. Asking for data is identical to asking for a

single web page from the server. URL includes a

value and API key which is then parsed by the

Python proxy, returning only the value to Arduino.

From Arduino programs’ point of view, there is a

little difference in this process from using a value

read from a sensor or outputting a value to a
component.

Performing all requests, both sending and receiv-

ing data, using GET requests with the device as the

client is mandated by practical network architec-

tures. Typically, both wireless and wired networks

are protected by a firewall. In many IPv4 networks,

the network also uses network address translation

(NAT). The conflict of low number of available
IPv4 addresses and the increasing need for new

addresses required by IoT systems have raised

worries about running short of addresses and calls

for faster IPv6 adoption [7]. However, making the

IoT nodes clients in the client-server architecture
can work behind NAT on existing IPv4 networks

without any modifications to the infrastructure. In

both cases, it is impossible to open a listening port

visible to the Internet, and thus, impossible to create

servers. A server in the Internet can facilitate com-

munication both from devices to the server and

between the devices. This approach also reduces

attack surface, as the IoT devices do not need to
answer arbitrary connections from the Internet.

The same backend server that interconnects the

devices can work as a backend for any web page. A

static web page can use JavaScript to perform

AJAX (asynchronous JavaScript and XML)

requests to the server. For example, a group of

students created a service where shirt sleeves could

be controlled by clicking a button on a web page.
For mobile experience, this web page could be

viewed on a cell phone. If an app is required, this

could be further packaged with a web based app

making system such as Cordova or PhoneGap. An

app packaged this way can be distributed in popular

cell phone app markets, such as Apple App Store

and Google Play.

3.1 Student development process

During the initial prototyping, students do all their

development on Arduino. Using a single platform

for development reduces context switching between

languages and environments, and limits the number

of technologies initially taught to the student. Pro-

totype development is similar to any embedded
development on the Arduino platform. The student

codes ina simple and limited subset ofC++using the

Arduino IDE. Code is uploaded with a single click.

To be an IoT device, by definition the thing must

Kimmo Karvinen and Tero Karvinen266

Table 2. Components chosen for implementation

Hardware Arduino Uno Desktop computer Virtual Private Server

OS No OS Linux/Windows/Mac Linux
Software Student’s code BotBookEspy http://one.api.botbook.com, Apache, Flask, PostgreSQL
Language C++ Python 3 Python 3, SQL

Fig. 3. Setup for prototyping.

communicate over the Internet. Arduino controls

the communication by sending an HTTP GET

URL to BotBookEspy, the Python proxy.

For example, theArduino programwritten by the

student might want to store current temperature,

3.5 degrees centigrade, to the server. The Arduino
program would use the built-in serial functions to

print the string ‘‘GET http://one.api.botbook.com/

add/h9aIcPe7p8Y/?x=3.5’’ to computer over serial.

BotbookEspy, the Python proxy running on the

desktop computer, would then perform the actual

HTTPGET request to the server one.api.botbook.-

com. If the API key is correct, this would store the

data point [current time; 3.5] to the database.
Current time is automatically added by the server,

which avoids running real-time clock (RTC) on the

embedded devices and guarantees single source of

truth for time and time zones. When the server

(one.api.botbook.com) answers, the first line of

the answer body is returned to theArduino program

by the BotBookEspy Python proxy. As the student

program only prints one line of text, this complexity
is effectively hidden from him/her at this point.

Reading data is done using a similar GET request

and the chain of events is similar to saving data to

the server. Because the BotBookEspy proxy only

returns the first line of HTTP response body, only

minimal parsing is required to extract the floating

point value, which is then explicitly cast to float for

further processing. To let students ignore the imple-
mentation details at first, we provided serial-

HttpGetFloat() function to perform these steps.

The serial-HTTP proxy BotBookEspy is pro-

vided for the student. It requires no configuration or

modification by the student. The proxy performs

HTTP GET requests according to the instructions

from the serial. Simple debugging is another feature

of the proxy. All requests, both failed and success-
ful, are shown on student computer. This allows

students to catch common problems, such as typos,

incorrect API keys and other trivial errors. When

problems occur, it also helps splitting the problem

domain at a central point.

Encapsulating Internet access to separate func-

tions also works as preparation for optional later

miniaturization. When the program works with the
quickly iterable, reliable and wired initial prototyp-

ing setup, the student can simply replace the con-

tents of these functions to allow standalone

operation without the BotBookEspy Python

proxy and without a computer.

This prototyping system allows student to

develop his software on a single, simple platform

while performing real requests to a real server.
Supporting parts can later be replaced when the

system is more mature and needs to be packaged

and miniaturized.

3.2 Server

To engage student creativity and imagination, the

prototyping setup here allows students to work on

aspects that are special and unique in their setup. In

contrast, the prototyping platform hides much of

the boilerplate code and other work that is similar

between many projects. One of the parts similar

between projects is the server backend.
On one hand, students want to get started quickly

and concentrate on the unique parts. On the other

hand, there needs to be a clear and scalable path for

reaching clients, obtaining customers and publish-

ing the end results. Tomeet these criteria, wewrote a

simple backend software on top of a free stack. The

licenses of our software and the required stack all

meet the criteria for free software as defined by the
Free Software Foundation [16].

The tasks fulfilled by the server are data logging,

embedded device connectivity, web client connec-

tivity and data monitoring. Data logging,

embedded device connectivity and web client con-

nectivity are performed using an HTTP GET API.

Web clients, such as mobile apps and static web

pages on other servers, require special security
features such as Cross-Origin Resource Sharing

(CORS), which were implemented in our server

and used by students in the pilot workshop. Data

monitoring is created using a regular JavaScript

application on a web page, using the same APIs as

other clients. User authentication is implemented as

a server side feature.

Learning a newAPI can be a significant challenge
for programmers on any level, resulting in wasted

effort [17]. To make APIs easier to learn, emphasis

should be placed onAPI usability [17]. Tomake our

API stable (not requiring frequent changes) and

simple to learn for our students, we decided to

leverage familiar web technologies and use only

three types of GET requests.

TheGETAPI only provides three functions: add,
last and json as shown in Table 3. The twoAPI keys

for each user are created at registration time, and

they are shownonuser page and on the two example

pages. View API key cannot modify data, so it can

be used in public web pages, cell phone apps and

digital signage in public areas. Two different view

functions are required by different clients: full

browsers often want to see many data points, for
example to draw a graph. To facilitate a common

IoT Rapid Prototyping Laboratory Setup 267

Table 3. API endpoints provided by BotBookAPI v 1.0.0

Path Feature

/add/<addkey>/?x= Store a data point [currentTime, x]
/last/<viewkey> Return x value for last data point
/json/<viewkey>/index.json Return all stored data points

use case of one device reacting to an event from

another, geographically distant device, we imple-

mented the last endpoint. Even though the same

data could be obtained by parsing the output of json

endpoint, the last endpoint reduces the strain of

parsing on the limited embedded environments and
also makes it much simpler for students to develop

common use cases.

In addition to GET API, the BotBookAPI web

application provides login related functions (regis-

ter with invite, login, user page, logout) and API

usage examples (send.html andgetlast.html).On the

user page, user can retrieve his API keys (viewkey

and addkey) and monitor the latest data points.
Monitoring the data points allows instant results for

beginners and helps debugging by splitting the

problem space.

Students can use any web browser with Java-

Script support to retrieve the data. For example,

students could embed data points on their static

homepage. To allow the data to be used thisway, the

BotBookAPI server application injects Cross-
Origin Resource Sharing (CORS) headers to /json/

responses. Namely, it sends Access-Control-Allow-

Origin * and Content-Type application/json. This

feature was used by many projects, for example

controlling shirt sleeves over the Internet with

mobile phone, and letting social media site Face-

book users control LED lights.

The students using these features do not need to
be familiar with the implementation details, such as

CORS. Instead, they could use their web develop-

ment skills (HTML, CSS and JavaScript) in combi-

nation with modifying the given examples.

In the pilot workshop, the server was provided to

students. To allow advanced students to create their

own solutions, we provide the BotBookAPI server

code as an example [18]. As it runs on a completely
free stack (Linux, Apache, PostgreSQL, mod_wsgi,

Python 3, Flask), students are able to build a whole

IoT solution they control. In the workshop, one

advanced student implemented a similar backend

from scratch using similar architecture and LAMP

(Linux, Apache, MySQL, PHP) stack. As most

students in the pilot workshop started with no

programming skills at all, it was convenient that
the server side could be used as an extra task for the

advanced student. This also shows that it’s possible

for students to obtain the tools in addition to the

skills.

Modern web frameworks combine multiple com-

ponents, all of whichmust work together to provide

a scalable and secure service. To standardize this

configuration, our example BotBookAPI server
configuration was described in Puppet. Puppet is a

modern (idempotent, infrastructure-as-code) con-

figuration management system. Idempotence

means the goal, the target state of the system, is

described. Puppet only doesmodifications to system

state to fix any deviations. Infrastructure-as-code

approachmeans using versionable plain text for this

configuration. Using Puppet makes it much easier

for an administrator to install the system, but it does
not eliminate the need for basic administration

skills. In the workshop, only one student installed

his own backend, probably due to the strict time

limit.

As noted above, the whole environment is based

on free software.While the server end could be built

relying on third party services, free software solu-

tion has some significant advantages. IoT’s future
ubiquity combined with efficient storing and acces-

sing data raises serious privacy concerns [7]. Infer-

ence techniques and access to large amounts of data

makes anonymization more unreliable. The need

for accepting several privacy policies makes it even

more complicated for users to prevent unwanted

data usage. [19] Open source server code could solve

some of these issues as it enables development of
services that are not entirely controlled by third

party commercial operators.

4. Miniaturization with ESP8266

The ESP8266 is a low-cost Wi-Fi capable micro-

processor, designed by Espressif systems and there
are breakout boards available with various features

and layouts based on ESP8266 [20].With small size,

features and the low price combined, ESP could be

potential platform for IoTprototypes andproducts.

At the time of writing, an inexpensive ESP8266-12E

development board with pin headers connected and

USB cable included sold for 7 EUR for one-unit

orders, making it an affordable IoT prototyping
platform [21].

It is common to add external components to

Arduino to enable wireless connectivity. For exam-

ple, Sarkar and Das [22] mention Arduino Wi-Fi

Shield but endupusing anESP8266 as an additional

component to Arduino. Adding external compo-

nents increases complexity, size and price. It could

also add to power consumption and thus further
increase size for battery powered devices. The

improvements of ESP8266 family chips and related

devboards have made it feasible to miniaturize the

whole system into an ESP8266 board and comple-

tely drop the requirement for an Arduino board.

ESP8266 is a family of chips, including bare-

bones ESP8266-01 (ESP-01) and more featureful

ESP8266-12E. Many development boards have
been published for each chip by different third-

party manufacturers. Typically, the smallest ESP-

01 requires many support components, provides

many low-level challenges and is slow to work

Kimmo Karvinen and Tero Karvinen268

with. Some ESP8266-12E devboards are simple to

use, as they only require a USB cable and Arduino

IDE for programming.

We tested ESP-12E and ESP-01 to find out how

fast code uploadswould they enable. For testing, we

used 9 lines of code. Using Arduino IDE with ESP-
12E, the upload took approximately 30 seconds

including time to compile the program.

Uploading code to ESP-01 using Arduino IDE

requires using a FTDI Serial TTL USB Cable and

3.3V power source. 3.3V connected to ESP-01 VCC

has to be disconnected and reconnected each time

before uploading. In our tests, loading the code to

ESP-01 took approximately 34 seconds. This
includes the compiling time but excludes discon-

necting and connecting the needed wire, and user

errors with the wires. Using Arduino Uno with the

same code example, the upload time was under 4

seconds. Even though the difference might seem

insignificant, the time adds up quickly as during a

normal coding process, the program is uploaded

repeatedly. Also, user errors related to reconnecting
wires are greatly reduced when working with Ardu-

ino boards.

Arduino and desktop computer setup presented

above can be replaced with a single ESP8266-12E.

The only code change needed is replacing serial

read/write functions with WLAN functions and

adding WLAN initialization function. This way

the prototype can be ported to an inexpensive and

small package while still having the advantages of

the fast and reliable prototyping phase in wired

environment. As the three WLAN functions are

the same for any program using the proposed
setup, we can provide ready-made functions for

students.

ESP (and by extension, typical ESP devboards)

use 3.3 volt logic levels. In comparison, Arduino

uses 5 volt logic, a voltage that would break ESP

input pins. When using ESP devboards providing 5

V output, often the only change needed is a level

converter or a voltage divider on ESP input pins.
ForESPoutput, 3.3V is high enough to consistently

register as high in many 5 V sensors and actuators.

5. Assessment

In our case workshop, all student groups were able

to design and build a working prototype based on

their own ideas. Final prototypes are listed on

Table 4.
Workshop had a range of art students from

different departments, such as art education, indus-

trial design and interior & textile design. During the

workshop, the most prominent issue was lack of

technical skills needed for successful prototyping.

IoT Rapid Prototyping Laboratory Setup 269

Table 4. University of Lapland final prototypes—4 day case workshop

Project Description

Far away candle An imitation RGB-LED candle that lights up when a flame sensor detects real candle being lit up in a different
location.Concept is that you cangive an artificial candle to someone close to youand light it up evenwhen theyare
on the other side of the world.

Baiting box A box that offers a candy bar when someone comes near, but pulls it awaywhen a person approaches.Movement
and distance are measured with an ultrasonic distance sensor. Servo motor moves candy bar in and out. Cloud
service updates and presents the number of people tricked on a website.

Henhouse curtain Curtains that can be controlled with webpage interface. Opening and closing can also be timed by cell phone
calendar events by loadingHTTPAPI. The curtainmechanism is built with continuous rotation servomoving the
blinds along the rail andmicroswitches to detect when the edges are near. The project was used as a prototype for
one student’s urban henhouse.

Busy owl A felt owl that reacts with movement and color to the number of Bluetooth devices present in another space. The
owl’s animatronics are constructed with servo motors and color changing feature is made by combining RGB-
LED to optical fibers. Bluetooth devices are detected by using an external Bluetooth module. The number is
shown on a web page with animated presentation of the owl. Professional looking felt owl was also designed and
built from the scratch during the workshop. The group implemented their own LAMP (Linux Apache MySQL
PHP) HTTP backend to similar to BotBook HTTP API.

Pattern riddle A box with large buttons and a riddle to help to find the right pattern. Correct and incorrect attempts are logged
and shown on a website.

Care about you A light installation made with LEDs that is lit when someone clicks sharable ‘‘care about you button’’ on a
website. The link was distributed on the social media during the workshop and received a large number of clicks
from people who were not course participants.

Secret knock A webpage that reacts on people knocking on a table. Right knocking pattern opens the next page.

Sleeves of distant
thoughts

A shirt with sleeves that can be raised and loweredwith a cell phone user interface. Sleeve length is adjustedwith a
continuous rotation servo and a reel attached to the servo horn. Successful combination of fabric and garment
design was a large part of this project. The shirt that was fabricated during the course, was both functional and
professional looking.

Dancing garden Miniature garden of trees creating shadows on the background. Trees attached to servo motors can be rotated to
desired positions via website. Concept is that trees can be adopted by several people, creating a moving social
garden installation.

As the student group was diverse, the base knowl-

edge varied from students with experience in pro-

gramming and building embedded systems to

students that had near zero knowledge in those

areas. This issue could be alleviated by arranging a

basic embedded system course prior to IoT work-
shop. In the preliminary knowledge review, over

half of the students evaluated their programming

skills with the lowest available number 1/5 while the

average rating was 1.5 (n = 19). In the feedback, the

average was raised to 2.5/5 and no one selected the

lowest rating.

Reception for technical subject presented for

mainly non-technical audience was positive. In the
feedback questionnaire of the case workshop, stu-

dents scored the course 4.3/5 on average. Every

participant would also recommend the course to

other students.

The workshop was tested again with a different

audience but similar results. A diverse group of ICT

students (n = 27) in Haaga-Helia University of

Applied Sciences, Helsinki, participated the course

in spring 2017. During the five-day workshop, the

groups created, prototyped and published a total of

13 projects. All ideas from the projects were from

the students themselves. All groups successfully

built a working prototype during the workshop

and published a documentation of their project
on the Internet [23]. Final prototypes are listed on

Table 5.

All projects use HTTP APIs, most of them used

the BotBook HTTP API described in this paper. In

amusement park queue estimator, students imple-

mented their ownHTTPbackend based on the same

concept, giving indication that thismethod andAPI

is easy to understand. One project read its data from
apublicHTTPAPI of a third-partyweather service,

and two sent email using third party HTTP API.

Internet web interface was obviously important for

projects that needed to be controlled from great

distance, but in some cases web also served as a very

convenient cell phone remote control for devices in

the same room. These examples indicate that the

concept of theHTTPAPI is easy to understand on a

Kimmo Karvinen and Tero Karvinen270

Table 5. Haaga-Helia University of Applied Sciences final prototypes—5-day workshop

Project Description

Internet of window
blinds

A curtain that can be controlledwith a cell phone or any otherweb browser. Full sizewindowblinds controlled by
two servos.

GSR lie detector Stress level is estimated from galvanic skin resistancemeasured with capacitor load time. Stress level is relayed to
web for display on a video projector or viewing as additional information during a video call.

Amusement park
queue estimator

Shows real timemap of queues on a web page. Queueing visitors are detected fromRFID badges. CustomHTTP
backendwith JavaScriptNode.js using the Express framework, frontendwithHTMLandAJAX (Asynchronous
JavaScript and XML).

Room fill counter Estimates thenumberof persons in the room.By-passers and their direction (in or out) ismeasuredwith twoactive
infrared sensors. This count is sent to HTTP backend. A web page reads this count and draws a graph of total
persons in the room.

Weather lamp Lampchanges color according to temperature in chosen city.Temperature is read fromapublicAPIof an external
public service.

Medicine alarm Showon theweb ifmedicines are taken, so caretakers canmonitor the situation remotely and non-intrusively. If a
pressure (weight) sensor has not been disturbed, a very simple web page indicates forgotten pills by changing a
number.

Cool down gamer A fan that can be activated using the web, to be used as a gag in online games. A relay and an additional power
source was used for running a 12 V fan.

Two-way door
monitor

Alarm device that detects entries but ignores exits, withweb remote control. It uses twomicroswitches tomonitor
a typical Finnish apartment building double door that has inner and outer door near each other. A box for
Arduino was 3D printed using a third-party model.

Tomato watchman Email user if tomato living conditions are out of pre-defined limits. Measured conditions are temperature, light,
air humidity and soil humidity. A Python program checks conditions once an hour using Linux cron, then sends
email using HTTP API to third party email service.

Body heat for health Body heat is measured and graphed on a web page. Prototype required a wire, but initial attempts for porting to
ESP8266-12E were made for miniaturization and wireless operation.

Guitar humidity
measurement

Conditions inside guitar box are measured, wirelessly transmitted to backend using WIFI and graphed on the
web. These measurements help guarding expensive instruments when they are borrowed or stored. Successful
miniaturization was achieved using ESP8266-12E. A business model based on this device was being evaluated
after the course.

Lock usingNFCdebit
cards, travel cards and
student cards

A lock that can be opened a card already carried by the user. Optionally, a verification email could be sent with a
link click required for opening the lock.

You hit like a
programmer

Aheavy punching bag in public areameasured the hit strengthwith an accelerometer and showed the result on the
web.

level where students can apply it to new situations

and services.

Background varied from novices (0 credits) to

final-year students. One student initially visited the

workshop but did not start the project and did not

provide feedback, and thus is not included in the
population n. Course feedback was excellent, with

mean 4.8/5,mode andmedian 5/5. The results of this

workshop are in line with the experiences of the

workshop we described earlier. The results give

initial indication that the proposed method is sui-

table for audiences with diverse backgrounds and

different levels of technical expertise.

6. Discussion

Using Arduino with a desktop computer and a

Python program as a proxy was confirmed to be a

suitable way for rapid prototyping IoT devices.

Wired environment combined reliable prototyping

with fast development cycle.
The phase when students design their projects

and choose the features that will be implemented is

crucial. Without guidance, there is a risk that they

will start a project that is impossible to carry

through in a given time, or make a too simple safe

plan with not much space for innovation.

The option to use ESP8266 to turn prototype into

small autonomous package was not carried out by
any group in the case workshop. There was a pre-

built small battery operated ESP8266 device used as

an example of how thewhole device can be ported to

a small, wireless and inexpensive package. It is

important that students are not left with an impres-

sion that IoT devices are computers combined with

embedded systems, but the setup is used for effective

prototyping purposes only.
While some students lacked technical skills, the

case class excelled in the tasks where innovation was

needed. When asked to make a plan of an IoT-

device and present it to everyone, students instantly

started forming surprisingly unique ideas. Several

groups also managed to combine their existing

expertise to embedded system design. Comparing

the art students’ case workshop to the second one
with ICT students shows how educational back-

ground effects on the results. The first group put a

lot of effort to make devices aesthetically pleasing

while the second group developed more advanced

technical solutions.

Arduino is sometimes seen as a tool for hobbyists

which skips many low-level challenges. Easier pro-

cess should not be overlooked by engineers and
experts as it supports effective and more creative

prototyping process [24]. While being accessible,

Arduino can be utilized for serious projects and

advanced applications [25].

7. Conclusions

Basic IoT prototyping skills that enable students to

design and build simple devices based on their own

innovation can be taught in a four-day-workshop.

Prior embedded system experience is not compul-

sory, but lack of it calls for smaller workshop size

and more personal support from a teacher or
teachers for each student.

The setup and the architecture used were suitable

for teaching IoT and building rapid prototypes. As

there was no need for server programming, students

could focus on their embedded systemdevelopment.

After students understood the concept of input,

processing and output, it was simple to move from

developing embedded systems to IoT devices. The
text output of the Python proxy program and

Arduino IDE’s serial monitor helped debugging

and developing the prototype considerably. Using

GET to send and receive data showed out to be easy

to understand for students and bypassed many

network limitations.

Utilized prototyping cycle and setup is consider-

ably faster for developing programs for ESP8266
than uploading code directly to it. The upload time

from Arduino IDE to ESP-12E was 750% of the

upload time to Arduino. Devices can be first devel-

oped and tested with a computer combined with

Arduino, and then easily ported to ESP. Case work-

shop’s timeframe did not allow students to use

ESPs, leaving that part of the process to be tested

on future courses. Longer courses would also allow
prototypingmore complex andfinalized IoTdevices

than the ones built during the case workshop.

Acknowledgements—The authors wish to express their thanks to
Ville Kyrki, Tomi Knuutila, University of Lapland, Minna
Kivihalme and Haaga-Helia University of Applied Sciences.

References

1. S. Madakam, R. Ramaswamy and S. Tripathi, Internet of
Things (IoT): A literature review, Journal of Computer and
Communications, 3(5), 2015, pp. 164–173.

2. J. Gubbi, R. Buyya, S. Marusic and M. Palaniswamia,
Internet of Things (IoT): A vision, architectural elements,
and future directions, Future Generation Computer Systems,
29(7), 2013, pp. 1645–1660.

3. Gartner Says 6.4 Billion Connected ‘‘Things’’Will Be in Use
in 2016,Up 30 Percent From2015 [Online]. Available: http://
www.gartner.com/newsroom/id/3165317. Accessed 18 May
2017.

4. V. S. Gordon and J. M. Bieman, Rapid prototyping: lessons
learned, IEEE Software, 12(1), 1995, pp. 85–95.

5. S. Chandrasekaran, A. Stojcevski, G. Littlefair and M.
Joordens, Project-oriented design-based learning: aligning
students’ views with industry needs, International Journal of
Engineering Education, 29(5), 2013, pp. 1109–1118.

6. A. M. Agogino, S. L. Beckman, C. Castaños, J. Kramer, C.
Roschuni and M. Yang, Design Practitioners’ Perspectives
on Methods for Ideation and Prototyping, International
Journal of Engineering Education, 32(3), 2016, pp. 1428–
1437.

IoT Rapid Prototyping Laboratory Setup 271

7. L. Atzori, A. Iera andG.Morabito, The internet of things: A
survey, Computer networks, 54(15), 2010, pp. 2787–2805.

8. P. Laplante and S. Ovaska, Real Time System Design and
Analysis, Wiley-IEEE Press, USA, 2011, pp. 3–4.

9. K. Karvinen, Teaching robot rapid prototyping for non-
engineers—a minimalistic approach,World Transactions on
Engineering and Technology Education, 14(3), 2016, pp 341–
346.

10. A. Soriano, L. Marin, M. Valles, A. Valera and P. Albertos,
LowCost Platform for Automatic Control Education Based
onOpenHardware, IFACProceedingsVolumes, 47(3), 2014,
pp 9044–9050.

11. A. Araujo, D. Portugal, M. S. Couceiro and R. P. Rocha,
Integrating Arduino-based educational mobile robots in
ROS, Journal of Intelligent & Robotic Systems, 77(2), 2015,
pp. 281–298.

12. C. Parikh, Introducing Arduino Platform to Sophomore’s
using an apt recipe, Proceedings of the 2014 ASEE North-
Central Section Conference, 2014 [Online]. Available: http://
people.cst.cmich.edu/yelam1k/asee/proceedings/2014/Paper
%20files/aseencs2014_submission_10.pdf. Accessed 7 Sep-
tember 2017.

13. P. Hertzog and A. Swart, Arduino—Enabling engineering
students to obtain academic success in a design-based
module, Global Engineering Education Conference
(EDUCON), Abu Dhabi, 11th–13th April 2016, IEEE.

14. MEDEA, Arduino FAQ—with David Cuartielles [Online].
Available: http://medea.mah.se/2013/04/arduino-faq/.
Accessed 7 September 2017.

15. Y-K. Lim, E. Stolterman and J. Tenenberg, The anatomy of
prototypes: Prototypes as filters, prototypes as manifesta-
tions of design ideas, ACM Transactions on Computer-
Human Interaction (TOCHI), 15(2), 2008, p. 7.

16. What is free software? [Online]. Available: https://www.gnu.
org/philosophy/free-sw.html. Accessed 18 May 2017.

17. B. A. Myers and J. Stylos, Improving API usability, Com-
munications of the ACM, 59(6), 2016, pp. 62–69.

18. BotBookAPI server code v 1.04 [Online]. Available: http://
iot.botbook.com/. Accessed 18 May 2017.

19. J. A. Stankovic, Research directions for the internet of
things, IEEE Internet of Things Journal, 1(1), 2014, pp. 3–9.

20. K. K. Patel, J. Patoliya and H. Patel, Low cost home
automation with ESP8266 and lightweight protocol
MQTT, Transactions on Engineering and Sciences, 3(6),
2015, pp 14–19.

21. ESP8266ESP-12ESerialWi-FiDevelopmentBoardModule
[Online]. Available: http://www.volumerate.com/product/
esp8266-esp-12e-serial-wi-fi-development-board-module-w-
built-in-antenna-micro-usb-cable-844404647. Accessed 18
May 2017.

22. T. Sarkar and N. Das, Exploring Web of Things with
embedded devices, Int. J. Advanced Networking and Applica-
tions, 7(3), 2015, pp. 2719–2723.

23. Internet of Things presentations today [Online]. Available:
http://terokarvinen.com/2017/internet-of-things-presentations-
today. Accessed 7 September 2017.

24. P. Jamieson, Arduino for teaching embedded systems. Are
computer scientists and engineering educators missing the
boat? FECS, USA, 12th–15th July 2010, pp. 1–6. Available:
http://www.users.miamioh.edu/jamiespa/html_papers/fecs_
11.pdf. Accessed 18 May 2017.

25. K. Karvinen, T. Tikka and J. Praks, Using hobby prototyp-
ing boards and commercial-off-the-shelf (COTS) compo-
nents for developing low-cost, fast-delivery satellite sub-
systems, Journal of Small Satellites, 4(1), 2015, pp. 301–314.

Kimmo Karvinen is a Master of Art, from Media Lab at University of Art and Design Helsinki. He is currently working

towards his D.Sc. at Department of Automation and Systems Technology, School of Electrical Engineering, Aalto

University. In addition to his focus on scientific research, Kimmo has co-authored five books about embedded systems,

translated to 12 languages. He is currently working as a CBO in a hardware manufacturer that specializes in IoT

technology. Before that he worked as a CEO in a leading company specializing in AV automation in Finland.

TeroKarvinen is aMaster of Science in Economics fromHelsinki School of Economics andBusiness Administration.He is

currently working towards his Ph.D. at Westminster Business School, the University of Westminster. Tero has co-

authored five books about embedded systems, translated to 12 languages. He is currently teaching Linux and embedded

systems in Haaga-Helia University of Applied Sciences, where his work has also included curriculum development and

research in wireless networking.

Kimmo Karvinen and Tero Karvinen272

