The Law Enforcement
and

Forensic Examiner’s
Introduction to Linux

A Practitioner's Guide to Linux as a Computer
Forensic Platform

Barry J. Grundy
bgrundy@LinuxLLEO.com

VER 3.78
December 2008

mailto:bgrundy@LinuxLEO.com

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Lin

ux

IEGALITIES. cevuuteettteeeeiieeeetieeereteeertteeeestteerssseeeerasaeeerssnsserssnnsesssnnsessssasessssnssesssnnsesssnnsessnessnsssnesnnessnens 4
ACKNOWLEDGMENTS. cvvvtuueeeeeerserssnnneeeessssssssnneeeesssssssssnsesesssssssssmneesssssssssssnnseessssssssssnsessssssssssnnseessssssssneeses 4

B OREWORD . ..t ittt ittt ettt et e e ettt et e et et esas e esssaeesasanessssassssssnseessnnssesssanserssnnserssnnsssnsesnnns 5

A WORD ABOUT THE “GINU” IN GINU/LINUX. uuvvvrreeeeiiiiiirereeeeeeeessisreeeeeeeeesssssseeesssssssssssssesssesssssssssssssess 6
WWHY LEARN LINUXZ..ceeeeeeeeee e ettt e ettt e e e e e e etaaae e e e e e e e e e aasaeeeeeessasasanssessrsssasansnseesesesssnnneeeennnnss 6
CONVENTIONS USED IN THIS DOCUMENT ...cvvvvuuueeeeerrerssssnneeeeessessssnneeeessssssssmnneesessssssssnnessessssssssnnseesssssssssneeses 7

I. INSTALLATION 8
DDISTRIBUTIONS. ..ttt eirtuuteeetieeeertieeertueeereseeeerssteeersssesesssseessssnseesssnsserssnnsesssmnsessssnsessssnesssssnnsesssnnsesssnneens 8
SLACKWARE AND USING THIS GUIDE.....cuvuuueeeeerereriiieeeeeeereerssneeeeeessssssmnneeeesssssssssnseeeesssssssmneeesssneeses 11
INSTALLATION IMIETHODS. cevvuuieruuneertrieeretieeersueeerssieeerssneeerssneessssneesssunsesssseessssnsesssssesrssnessnsssnessnessnees 12
SLACKWARE INSTALLATION INOTES vvvuuueeeeiiiriiiiiieeeeeeeertuuieeeeeeereerssneeeeeessssssmnneeeesssssssssnseseesssssssmnneessssneses 12
DESKTOP ENVIRONMENT . ..vuuuiittueeeetiieeeriteeeretieeeresneerssieesssssessssseesssssseesssnssesssnesesssneeesssneessssnsesssnnseees 16
THE LINUX KERNEL: VERSIONS AND ISSUES.....ccevvuuiiieeeeiirrriiiiieeeeeeerreruiiieeeeeeerresssnneeeeessssssnnesssneessnnerssneeses 16
CONFIGURING SLACKWARE 12: 2.6 KERNEL CONSIDERATIONS. «.vuuuveeeerrrrssnneseeeereesssnnnsseesesssssnnneessnseesnneesnnneres 19
UDEV.ettuuereunneerssnneesssneesssnneessssnsessssnesesssnesessssesessssnsessssnssssssnesssssneessssneeesssnesssssnesesssnneesssnnsesssnnssns 19
HARDWARE ABSTRACTION LLAYER...uuuiiiutiiiiiiiiieeiiiieeeiiieeeriteeerttieeerssieerssnneerssnnessssnseessnsssnsesnersnesnnees 20
DmBUS.ttuuueerrrueeeresneessssneeesssneessssneeesssnsessssnneessssnsessssnessssnnsessssnnsssssssesssnnsesssnesesssnesessessnsssnessnesnnees 20

2.6 KERNEL AND DIESKTOPS. ...tuuniiiiteiiiiiiiieeitiieeettieeetiteeersaneeerssieeesssneerssseesssmsessssseessseesnessessnees 21
“ROLLING YOUR OWN” = THE CUSTOM KERNEL...vvvvvviiiiiiiiiiieiieeeeeieiiiteeeeeeeeeesineereeeeeeesssssneseeessssssssnsnnnss 21
I1I. LINUX DISKS, PARTITIONS AND THE FILE SYSTEM 23
I D) TR 23
SN v (o) TN 23
USING MODULES — LINUX IDRIVERS. ..vuuetivtieiiiinieieriiieeertiieeererieeeresneeerssnnsessssseesssnsessssneessssnnsesssnssesssnessnses 25
DEVICE RECOGNITION. ..ccvtutiititiieieiiieeeeiieeerieeeeertieeertaeeertsaeerraeseesssaneessanseessanessssnsesssnssesssnnserssnersnees 27
o 1 BN 1 51 PO 28
III. THE LINUX BOOT SEQUENCE (SIMPLIFIED)....cccc00vteseeeeenes 30
BOOTING THE KERNEL...ueeeevvvvurnneeeeeereersnnieeeeeessssssmnaeeeessssssssmneeeesssssssssnneeessssssssssnnesssssssneesssnsessnnesssneeses 30

LD N 7N 77N & (0) PRSP 32
RUNLEVEL. 1ot e ittt e e ettt e e ettt e e e e e eeeaabseeeeeeeessassaaeeeeesssssssnnnnseessssssssnnnasessssssssnnessnnsssnnneses 32
(GLOBAL STARTUP SCRIPTS. .. ceevvttttuneeeeeeeeetsssieeeeesreesssneeesesessssmnseesesesssmmssseesessssssmnssessnserssesennsessnneres 33
SERVICE STARTUP SCRIPTS....evvuuuueeeeererrreuneeeeeessesssnneeeeessssssssmmeeesssssssssnneesesssssssssnmeessssssssnesssneessnnssssnneses 33
L7 & PR PRRN 34
IV. LINUX COMMAINDS...ccccccttreccesesccsscscessescsssscsssossssssssssssssssssssssssssssssssessassssssssssssssssasessssss .36
LINUX AT THE TERMINAL. .cevvuueeeruuneerrruneerssuneesssuneesssneeesssueeessssnessssnnsssssunsesssunssssssnesssssssssssnessnesssessnessnees 36
ADDITIONAL USEFUL COMMANDS. .. cvvuuuterssueeerssneeersssneessssnesesssnesesssssessssessssssnsssssssssesssnesessessssssnessnsssnssnnns 39
FILE PERMISSIONS. . evvtuuiiriteetttiietetiteeertteeertrteeerraaeeessaseeessaaeesssaeeersaasserssassesssnnsesssnnsessssnsessssnersnersnees 41

IV I ETACHARACTERS. 111 uevvrueeerreneeeerssneeerssneessssssessssnsessssnsessssnsessssnsessssnesssssnssssssnsesssnesesssssesssnnsesssnneessnees 44
COMMAND HINTS...ceieiitieeeeteietieeee e ettt e e e ettt eaaeeeeeeee et e aaaeeseeeesssaaaasssseeessssassssssesesssssnnnsssssnnnsees 44
PIPES AND REDIRECTIONuuiivttieitiiieeeeiiieeertteeereseeertsneeerssneeresneeesssseesssssneeesssneeesssnseesssnnsessssnsesssnnessnees 44
THE SUPER USER.ceuuuuuiiiiiiiiiiieeeeeeeetttuiieeseeeeetssaaasesseseesssannsssssessesssssnsssseeesesssnnnsssssssnnesssnssssnnsesneeees 46

V. EDITING WITH VL......cccereiereccrenccencencessescsssccssscsssescsssones 47
10 [0} 'Q0) Y/ C RN 47

VI COMMAND SUMMARY ..vvvvuuneeeeeesrerssnneeeeessssssssmeeeesssssssssnneesessssssssnnseessssssssssnsesssssssssssnneesessssssssneesssnns 48
VI. MOUNTING FILE SYSTEMS 49
THE MOUNT COMMAND.cuvtuuieeeeeerrrreiiieeeeeerrerrrmneeeeeesssssssmteesesssssssssmmeeeesssssssssseeessssssssssseesssnnessseeres 49
THE FILE SYSTEM TABLE (/ETC/ESTAB) ..cevvvuuuueeeeeeeeeeeuteeseeeeeessmnnssseeeeesesssnnssssseeeesssnnsssssssnnesssnesesnnsesnneees 51

Barry J. Grundy 2

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux
VII. LINUX AND FORENSICS 53
INCLUDED FORENSIC TIOOLS...cvvvuutiieeeeiiiiiiiiiieeeeeeereeiiiieeeeeeeeeestrnneeeeeesressssseeeeeesssssssnnnsessesssssssnnneeessnnneses 53
ANALYSIS ORGANIZATION .11 uueervuunseresunersssneesssneeesssseessssssessssnseesssnssesssnsessssnsessssnsessssnsessssneeesssneeesssesnnesns 54
DETERMINING THE STRUCTURE OF THE DISK.vvvvuuuneeeerrrssssnneeeeessessssmneeeeessssssssnnseessesssssssnnsesssesssnsessnnesssneeses 55
CREATING A FORENSIC IMAGE OF THE SUSPECT DISK.uuuueveerrusuuunseeerresssmnnseseeseesessmnesseeessssssmesesesssnseesnnsessnneees 56
MOUNTING A RESTORED IMAGE......vvvvvuuneeeeeerresssmnneeeeesssssssmnneeeesssssssssnsesessssssssssnsesssssssssssmnesssssssssssnnnesseses 57
MOUNTING THE IMAGE USING THE LOOPBACK DEVICE...uuu.eeeeerssuunnseeerressssnnsesseessesssmnseessesssssssnssseseessssnnneees 58
FILE HASH. 1 tteeeeeeeeeeieeee ettt ettt e e e e e e e et e e e eeeeeaaassa e eeeeessssssaanssesssssssssnnnseeesssssneessnnesssnneres 58
THE ANALYSIS. ctvuuneevtteeeeruueeererneeerssneeesssueesssneessssneesssssseesssneesssneeesssneessssseessssssessssnseesssnsesssseessnessnees 61
MAKING A LIST OF ALL FILES evvttteeeeiiieeiitiieeeeeeeeeetteee e et eeeevttieeeeeeeeseeassaneeeeesssssssnnnnssssnnesssneessnnesssnneses 62
MAKING A LIST OF FILE TYPES.cuuuittttiiiiiiee ittt ettt e eetteeeeete e e sttt s eesataeeesssanessssnneesssnssesssnnsesssnersnnes 63
VIEWING FILES. .. eiiiiiiiiiiieeeeeeeeetieeee e e eeeettteeeeeeeeeeatteeeeeeeeesassaaeeeeessassssnaeeesssssssssnnnessssssssnnessnnesssnnns 65
SEARCHING UNALLOCATED AND SLACK SPACE FOR TEXT...uuuuuiiiiiiiiieiiiieeeieeeeetiiieeeeeeeeeeaaseeeeeeesneeennessanneees 66
VIII. COMMON FORENSIC ISSUES cecereesnosnee .70
HANDLING LARGE DISKS. . cvvuuiiiiiiiiiiiiieiiiiieeietieeeetttieeertteeerraeeessanneeessteeesssaneesssanesssssnsesssnsssnssnnersnernnees 70
PREPARING A DISK FOR THE SUSPECT IMAGE....ccvvvuiiieiiiiiiietieeeeeeeeeeetiee e e eeeeeeetaeeeeeeressasanesssneesannessnnnares 72
OBTAINING DISK INFORMATIONuuuueieeiiiitieeeeeeeeettusnneeeeeeeesssannssseeessssssssssssesesssamnnssssssnnssssnsessnnsesnneeees 74
IX. ADVANCED (BEGINNER) FORENSICS .76
THE COMMAND LINE ON STEROIDS. ... ceiiiieittiieeeeeeeeeeetiieeeeeeereussieeeeeesresssnnsessesssssssnnnssessesessssnsssseserresses 76
FUNWITH DD ..ottt e e et eeettteee e e e e e e eaaaeeeeeeeeseessasaaeeeesssssssnnsessnnesssneessnnessnnneses 84
SPLITTING FILES AND IMAGES. ... iiiiiittiteee ettt e ettt e e e e e e ettt s e e e e e e eaaaeeeeeeeseasaannsseeeeesssaannnsseeeees 84
COMPRESSION ON THE FLY WITH DID.....ciiiiiiiiieiiiiiieiieeee ettt ettt e e e e eeeevaseeeeeeessasnaaeeeessnnnases 87
DATA CARVING WITH DDttt ettt e e e e e et e e e e e e e e eaaa s e eeeraanesesaeeannennnnsnes 91
CARVING PARTITIONS WITH DD .coiiiiiiiiiiiiiiiiieee ettt e e e e eeeeeateeeeeeeeeenasseeeeeessssssnnneesssssnnnnses 94
DETERMINING THE SUBJECT DISK FILE SYSTEM STRUCTURE. ..uuuuiiiiiiieetiee e e eeeeeeeiiiee e eeeeeeevtaeeeeaeeeanneesanneees 98
DD OVER THE WIRE....cevvtuuueeeeeereritiiieeeeeeerrertsieeeeeesssssssnneeeeesssssssssnseseessssssssmneessessssssssnseesssssssssssneeses 101
X. ADVANCED FORENSIC TOOLS 104
ALTERNATIVE IMAGING TOOLS. . ccvvuuiiiiiieeieiiieeiiiiieeeeeieeeeeteeeeetteeeestteeeresaeerasanserssnnsesssnneesssnneesssnnnesrnnns 106
151015)) 0 FOU SRRt 106
DDRESCUE. . evvuuneertsueeerssneeerssseessssnsessssneeessssessssssnsessssnsessssssessssssessssesesssnnssssssnsesssnnssnsssnessnsssnesnnns 113
BAD SECTORS = DDRESCUE.c.uuuuunniiieiirttueeeeeeeeresnnessseseersssnnsessssesssssnssessessssssmnsssssssssssmssssnseesanes 119
BAD SECTORS — DCBDD.cuuuiiiiiieiiiiiieeeeeeerrteiieeeeeeeerersieeeeeeeesesssnneseessrssssnneeesssrssssrneeessssssssnnnneeees 122
BAD SECTOR ACQUISITION = (CONCLUSIONS. 1uvuuneeeeerrrrnnnseeererrsssnssssessrssssnnssssseessssmnnssssssssnseesnsessannes 124
LIBEWF - WORKING WITH EXPERT WITNESS FILES....cccvuiiiiiiiiiiiiieeiiiieeeeiieeeertneeeeetneeerenneeereneesnessnesnnes 125
SLEUTHKIT. 1 ueeeeetetuueeeeeeeeettauueeeeereressassesseeesssssasssssssessssssnnssssseesssssnsssssseeessssnnssssesssnsessnneesnnsersnneees 134
SLEUTHKIT INSTALLATION AND SYSTEM PREP....uuuuiiiiiiiiiiiieeeeeeeieettiieeeeeeeeeeevtiieeeeeerrrsssaseeeeeesesssnnneessnneres 136
SLEUTHKIT EXERCISES. .uuuuniiiiiititieeeeeeeettttieeeeeeeetetuaasesseeeeesssansessssseesessnnssssseeesssssnnssssessssssnneesnnsessnneees 138
SteuTHKIT EXERCISE #1 — DELETED FILE IDENTIFICATION AND RECOVERY...ctvvuiiiitieeiiiieeiiiieeeeeneeeeenneeeennnens 139
SLEUTHKIT EXERCISE #2 — PHYSICAL STRING SEARCH & ALLOCATION STATUS...uvuueiieierirreneeeeeeeeerennieeeeennneens 150
SLEUTHKIT EXERCISE #3 — UNALLOCATED EXTRACTION & EXAMINATION....uvviiiiiiiiiieeeeeeeereiiiieeeeeeerrvenieeeenes 157
SLEUTHKIT EXERCISE #4 — NTEFS EXAMINATION: FILE ANALYSIS....cceitvvuutieeeeeeeieeiiieeeeeeeeeraaneeesneenaneeennneees 163
SLEUTHKIT EXERCISE #5 — INTEFS EXAMINATION: ADIS..c.oveeiiiiiiiiieeeeeeeeeeeeeee e eeee v e 168
SLEUTHKIT EXERCISE #6 — NTFS EXAMINATION: SORTING FILES....iiiiiiiiiiieeeiiieeieteee et 171
SLEUTHKIT EXERCISE #7 — SIGNATURE SEARCH IN UNALLOCATED SPACE.....cctvvvveeiieeeeeerrrreeiieeeeeeererenneernnneres 174
SIMART FOR LINUX...ceiiiittiieeeeeeeeeeeteee e et et etettee e e e e eeetaaaes s s e eeetasaassssseeessasaanssseesesssasnsssannsesnnsessnneees 179
SIMART FILTERING...evvuuuueeeetirrrriiiieeeeeerretuuieeeeeerrressnneeeeesssssssmnesesssssssssmneesessssssssmnsssessessssssnnsessnneres 185
SMART FILTERING — VIEWING GRAPHICS FILES.....ciiiiiiiiiieiieeeiiitiieee e eeeeeetiee e e e e e etevaeeeeeeeeeaannneesanneees 187
SIMART SEARCHING....uvuuteeeeieerretiiieeeeeeerrrrunieeeeeerssssssteeeeesssssssmeesesssssssssnseeessssssssssseeesssssssssmsseeessssees 189
XI. BOOTABLE LINUX DISTRIBUTIONS.....ccccccteecctrecccescccsascscsssscsssescsssosssssssssssssascossssssssssssssnee 194
Barry J. Grundy 3

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

TOMSRTBT = BOOT FROM A FLOPPY ...ueeeeervrrrunnneeeeesssssssnnseeeesssssssnnnesessssssssssnneessssssssssmnnesesssssssssnnnessesssssses 194
KNOPPIX - FULL LINUX WITHOUT THE INSTALL...vvvuunerresneeerssneeerssuneerssneeessssnsessssnseesssnesesssnneesssssesssssesssnns 194
SMART LINUX = IT'S BOOTABLE!...eveeiiiiiiiittiieeeeeeeeeiitreteeeeeeeessaseeeeeesesessssssseessesessssssssssesesesssssessssssnnns 194
HELIX — KNOPPIX BASED INCIDENT RESPONSE.....cuvuiiiitiieiriiiieeeriiieeeriieeerenieeerssteeessneesrsnneesseesnessnessneennns 195
XII. CONCLUSION 196
XIII. LINUX SUPPORT.....ccccecteeccrseccerscscssecsssescssssssssssssssssasessssssssssssssssssssssssssssssasessssssssasssssssse 197
PLACES TO GO FOR SUPPORT .. ccevuueieertiiieriieeeriieeerttneeersuneesssueesssueeessssseessssssessssnseesssussesssnseesssssessrssnns 197

Legalities

All trademarks are the property of their respective owners.

© 1998-2008 Barry J. Grundy (bgrundy@LinuxLEO.com): This document may
be redistributed, in its entirety, including the whole of this copyright notice,
without additional consent if the redistributor receives no remuneration and if
the redistributor uses these materials to assist and/or train members of Law
Enforcement or Security / Incident Response professionals. Otherwise, these
materials may not be redistributed without the express written consent of the
author, Barry J. Grundy.

Acknowledgments

As this guide grows in length and depth, so do the contributions I receive
from others in the field that take time out of their own busy days to assist me in
making sure that this document is at least accurate if not totally complete. I
very much appreciate the proof reading and suggestions made by all. Every
time I get comments back on a draft version of this guide, I learn something
new.

I would like to thank Cory Altheide, Brian Carrier, Christopher Cooper,
Nick Furneaux, John Garris, Robert-Jan Mora, and Jesse Kornblum for
providing critical review, valuable input, and in some cases, a much needed
sanity check of the contents of this document. Special thanks to Robby
Workman for providing very constructive guidance on Slackware details
throughout the entire guide. All of the expertise and contributions are greatly
appreciated.

Also, I would like to specifically thank all of the Linux Kernel, various
distribution, and software development teams for their hard work in providing
us with an operating system and utilities that are robust and controllable. Too
often we forget the amount of dedication and work that goes into what many
end users expect to just “work”.

Barry J. Grundy 4

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Foreword

This purpose of this document is to provide an introduction to the
GNU/Linux (Linux) operating system as a forensic platform for computer
crime investigators and forensic examiners.

This is the third major iteration of this paper. There is a balance to be
met between maintaining the original introductory purpose of the work, and
the constant requests from others coupled with my own desire to add more
detailed content. Since the first release, this work has almost quadrupled in
length. The content is meant to be “beginner” level, but as the computer
forensic community evolves and the subject matter widens and becomes more
mainstream, the definition of “beginner” level material starts to blur. As a
result, I've made an effort to keep the material as basic as possible without
omitting those subjects that I see as fundamental to the proper understanding
of Linux and its potential as a computer forensic platform. A number of people
have pointed out to me that with inclusion of some of the more complex
exercises, this document should be given the more fitting “practitioner's guide”
moniker rather than “beginner's guide”.

We follow the philosophy that a hands-on approach is the best way to
learn. GNU/Linux operating system utilities and specialized forensic tools
available to investigators for forensic analysis are presented with practical
exercises.

This is by no means meant to be the definitive “how-to” on forensic
methods using Linux. Rather, it is a (somewhat extended) starting point for
those who are interested in pursuing the self-education needed to become
proficient in the use of Linux as an investigative tool. Not all of the commands
offered here will work in all situations, but by describing the basic commands
available to an investigator I hope to “start the ball rolling”. I will present the
commands, the reader needs to follow-up on the more advanced options and
uses. Knowing how these commands work is every bit as important as knowing
what to type at the prompt. If you are even an intermediate Linux user, then
much of what is contained in these pages will be review. Still, I hope you find
some of it useful.

Over the years I have repeatedly heard from colleagues that have tried
Linux by installing it, and then proceeded to sit back and wonder “what next?”
[have also entertained a number of requests and suggestions for a more
expansive exploration of applications available to Linux for forensic analysis at
the application level. You have a copy of this introduction. Now download the
exercises and drive on.

Barry J. Grundy 5

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

As always, I am open to suggestions and critique. My contact
information is on the front page. If you have ideas, questions, or comments,
please don’t hesitate to e-mail me. Any feedback is welcome.

This document is occasionally (infrequently, actually) updated. Check
for newer versions (numbered on the front page) at the official site:

http://www.LinuxLEO.com

A word about the “GNU” in GNU/Linux

When we talk about the “Linux” operating system, we are actually
talking about the GNU/Linux operating system (OS). Linux itself is notan OS.
Itis just a kernel. The OS is actually a combination of the Linux kernel and the
GNU utilities that allow us (more specifically our hardware) to interact with the
kernel. Which is why the proper name for the OS is “GNU/Linux”. We
(incorrectly) call it “Linux” for convenience.

Why Learn Linux?

One of the questions I hear most often is: “why should I use Linux when
I already have [insert Windows GUI forensic tool here]?” There are many
reasons why Linux is quickly gaining ground as a forensic platform. I'm hoping
this document will illustrate some of those attributes.

» Control - not just over your forensic software, but the whole OS and
attached hardware.

» Flexibility — boot from a CD (to a complete OS), file system support,
platform support, etc.

e Power — A Linux distribution is (or can be) a forensic tool.

Another point to be made is that simply knowing how Linux works is
becoming more and more important. While many of the Windows based
forensic packages in use today are fully capable of examining Linux systems,
the same cannot be said for the examiners.

As Linux becomes more and more popular, both in the commercial
world and with desktop users, the chance that an examiner will encounter a
Linux system in a case becomes more likely (especially in network
investigations). Even if you elect to utilize a Windows forensic tool to conduct
your analysis, you must at least be familiar with the OS you are examining. If
you do not know what is normal, then how do you know what does not belong?
This is true on so many levels, from the actual contents of various directories to
strange entries in configuration files, all the way down to how files are stored.

Barry J. Grundy 6

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

While this document is more about Linux as a forensic tool rather than analysis
of Linux, you can still learn a lot about how the OS works by actually using it.

Conventions used in this document

When illustrating a command and it's output, you will see something
like the following:

root@rock:~# command
output...

This is essentially a command line (terminal) session where...
root@rock:~#

...is the command prompt, followed by the command (typed by the user)
and then the command's output. The command will be shown in bold text to
further differentiate it from command output.

In Linux, the command prompt can take different forms, depending on
the environment settings (the default differs among distributions). In the
example above, the format is

user@hostname directory #

meaning that we are the user “root” working on the computer named
“rock” currently in the directory roof (the root user's home directory — in this
case, the “home directory” is symbolized by the shorthand representation of
the tilde “~”). Note that for a “root” login the command prompt's trailing
characteris #. If we log in as a regular user, the default prompt character
changes to a §, as in the following example:

bgrundy@rock:~$
This is an important difference. The “root” user is the system

“superuser”. We will cover the differences between user logins later in this
document.

Barry J. Grundy 7

mailto:user@hostname

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

I. Installation

First and foremost, know your hardware. If your Linux machine is to be a
dual boot system with Windows, then use the Windows Device Manager to
record all your installed hardware and the settings used by Windows. If you are
setting up a standalone Linux system, then gather as much documentation
about your system as you can. This has become much less important with the
evolution of the Linux install routines. Hardware compatibility and detection
have been greatly improved over the past couple of years. Some of the recent
versions of distributions, like Ubuntu Linux, have extraordinary hardware
detection.

* Hard drive — knowing the size and geometry is helpful when planning your
partitioning.

» SCSI adapters and devices (note the adapter chipset). SCSI is very well
supported under Linux.

» Sound card (note the chipset).

* Video Card (important to know your chipset and memory, etc.).

* Monitor timings.

* Horizontal and vertical refresh rates.

* Network card (chipset).

» Network Parameters:

e [P (if not DHCP)

* Netmask

* Broadcast address

* DNS servers
» Default gateway

» USB controller support is standard in current distributions.

* [EEE1394 (Firewire) controller support is also standard in current

distributions.

In the vast majority of cases, most of this information will not be needed.
But it's always handy to know your hardware if you must trouble shoot.

Most distributions have a plethora of documentation, including online
help and documents in down loadable form. Do a Web search and you are
likely to find a number of answers to any question you might have about
hardware compatibility issues in Linux.

Distributions

Linux comes in a number of different “flavors”. These are most often
referred to as “distributions” (“distro”). Default kernel configuration, tools that
are included (system management and configuration, etc.) and the package

Barry J. Grundy 8

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

format (the upgrade path) most commonly differentiate the various Linux
distros.

It is common to hear users complain that device X works under Suse
Linux, but not on Red Hat, etc. Or that device Y did not work under RedHat
version 9, but a change to CentOS “fixed it”. Most often, the difference is in the
version of the Linux kernel being used and therefore the updated drivers, or the
patches applied by the distribution vendor, not the version of the distribution
(or the distribution itself).

Here's an overview of just a few of the Linux distros that are available.
Selecting one is a matter of preference. Many of these distros now provide a
“live CD” that allows a user to boot a CD into a fully functional operating
environment. Try them out and see what pleases you.

Red Hat / Fedora
One of the most popular Linux distributions. Red Hat works with

companies like Dell, IBM and Intel to assist businesses in the adoption of Linux
for enterprise use. Use of RPM and Kickstart began the first “real” user upgrade
paths for Linux. Red Hat has elected to move into an enterprise oriented
business model. It is still a viable option for the desktop through the “Fedora
Project” (http://fedoraproject.org/) . Fedora is an excellent choice for
beginners because of the huge install base and the proliferation of online
support. The install routine is well polished and hardware support is well
documented. Another Red Hat based distribution is CentOS.

Debian
Not really for beginners. The installation routine is not as
polished as some other distributions. Debian has always been a hacker
favorite. Itis also one of the most “non-commercial” Linux distributions, and
true to the spirit of GNU/GPL. (http://www.debian.org/).

SuSE
Now owned by Novell, SuSE is originally German in origin. Itis
by far the largest software inclusive distribution.
(http://www.novell.com/linux/). There is an “open” support network and
download directory at http://www.opensuse.org. A Live CD is also available.

Mandriva Linux
Formerly known as “Mandrake”. Mandriva is a favorite of many
beginners and desktop users. Itis heavy on GUI configuration tools, allowing
for easy migration to a Linux desktop environment.
(http://wwwnew.mandriva.com/).

Barry J. Grundy 9

http://wwwnew.mandriva.com/
http://www.opensuse.org/
http://www.novell.com/linux/
http://www.debian.org/
http://fedoraproject.org/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Gentoo Linux
Source-centric distribution that is optimized during install — one
of my personal favorites. Once through the complex installation routine,
upgrading the system and adding software is made extremely easy through
Gentoo’s “Portage” system. Notfor beginners, though. You are left to
configure the system entirely on your own. If you have endless patience and a
lot of time, it can be a fantastic learning experience. (http://www.gentoo.org/).

Ubuntu Linux
A relative newcomer, Ubuntu Linux is based on Debian and
although I've not used it myself, it has a reputation for fantastic hardware
detection and ease of use and installation. (http://www.ubuntulinux.org). I've
heard that this is a great choice for beginners.

Slackware

The original commercial distribution. Slackware has been around
for years. Installation is now almost as easy as all the others. Good standard
Linux. Not over-encumbered by GUI config tools. Slackware aims to produce
the most “UNIX-like” Linux distro available. One of my personal favorites, and
in my humble opinion, currently one of the best choices for a forensic
platform. (http://www.slackware.com/). This guide is tailored for use with a
Slackware Linux installation.

Lot's of information on more distributions than you care to read about
is available at http://www.distrowatch.com.

My suggestion for the absolute beginner looking to experience an overall
“desktop” OS would be either the newest version of Fedora Core or Ubuntu. If
you really want to “dive in” and bury yourself, go for Gentoo, Slackware or
Debian. If you choose one of these latter distributions, be prepared to read...a
lot.

If you are unsure where to start, will be using this guide as your primary
reference, and are interested mainly in forensic applications of Linux, then I
would suggest Slackware. More on why a little later.

One thing to keep in mind: As I mentioned earlier, if you are going to
use Linux in a forensic capacity, then try not to rely on GUI tools too much.
Almost all settings and configurations in Linux are maintained in text files
(usually in either your home directory, or in /etc). By learning to edit the files
yourself, you avoid problems when either the X window system is not available,
or when the specific GUI tool you rely on is not on a system you might come
across. In addition, knowledge of the text configuration files will give you
insight into what is “normal”, and what might have been changed when you
examine a subject system. Learning to interpret Linux configuration files is all
part of the "forensic experience".

Barry J. Grundy 10

http://www.distrowatch.com/
http://www.slackware.org/
http://www.ubuntulinux.org/
http://www.gentoo.org/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

SLACKWARE and Using this Guide

Because of differences between distributions, the Linux flavor of your
choice can cause different results in commands' output and different behavior
overall. Additionally, some sections of this document describing configuration
files or startup scripts, for example, might appear vastly different depending on
the distro you select.

If you are selecting a Linux distribution for the sole purpose of learning
through following along with this document, then I would suggest Slackware.
Slackware is stable and does not attempt to enrich the user's experience with
cutting edge file system hacks or automatic configurations that might hamper
forensic work. Detailed sections of this guide on the inner workings of Linux
will be written toward a basic Slackware installation (currently in version 12.1).

Previous versions of this document attempted to be far more distro
independent. The examples and discussions of configuration files were
focused on the more popular distribution formats. In the intervening years,
there has been a veritable explosion of different flavors of Linux. This guide
has been linked on a number of websites, and has been used in a variety of
training forums. As a result of these changes, I have found myself receiving
numerous e-mails asking questions like “The output I get does not match
what's in your guide. I'm using 'Fuzzy Kitten Linux 2.0' with kernel version
2.6.16-fk-14-5.2...What could be wrong?” My reply has become standard to
such queries: “I'm not familiar with that version of Linux, and I'm not sure
what changes have been made to that kernel”. Providing answers to questions
on the exercises that follow requires that I know a little about the environment
being used. To that end, I've decided to point people towards a standard,
stable version of Linux that includes few surprises.

By default, Slackware's current installation routine leaves initial disk
partitioning up to the user. There are no default schemes that result in
surprising “volume groups” or other complex disk management techniques.
The resulting file system table (also known as “fstab”) is standard and does not
require editing to provide for a forensically sound environment, unlike some
other popular distributions.

The most recent version of Slackware (12.x) now uses the 2.6 series
kernel by default. In many circumstances, your hardware will require you that
use a 2.6 kernel (certain SATA controllers, etc.). In recognition of this, the
current version of this document now assumes that the user has installed a 2.6
kernel version of Linux. This brings the LinuxLEO Practitioner's Guide in line
with the majority of forensic practitioners currently using Linux, including

Barry J. Grundy 11

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

myself. Previous versions of this document suggested a 2.4 (kernel version)
install.

Slackware Linux is stable, consistent, and simple. As always, Linux is
Linux. Any distribution can be changed to function like any other (in theory).
However, my philosophy has always been to start with an optimal system,
rather than attempt to “roll back” a system heavily modified and optimized for
the desktop rather than a forensic workstation.

If you are comfortable with another distribution, then by all means,
continue to use and learn it. Just be aware that there may be customizations
and modifications made to the standard kernel and file system setups that
might not be ideal for forensic use. These can always be remedied, but I prefer
to start as close to optimal as possible.

Installation Methods

* Download the needed ISO (CD image) files, burn them to a CD and boot the
media. This is the most common method of installing Linux. Most distros
can be downloaded for free via http, ftp, or torrent. Slackware is available at
http://www.slackware.com. Have alook at
http://linuxlookup.com/linux iso or http://distrowatch.com/ for
information on downloading and installing other Linux flavors.

» Use a bootable Linux distribution (covered later). For example, the SMART
or Helix Linux bootable CDs can easily be used as experimental platforms.
See http://www.asrdata2.com or http://www.e-fense.com/helix for more
information.

During a standard installation, much of the work is done for you, and
relatively safe defaults are provided. As mentioned earlier, hardware detection
has gone through some great improvements in recent years. I strongly believe
that many (if not most) Linux distros are far easier and faster to install than
other “mainstream” operating systems. Typical Linux installation is well
documented online (check the “how-tos” at the Linux Documentation Project:
http://www.tldp.org/). There are numerous books available on the subject,
and most of these are supplied with a Linux distribution ready for install.

Familiarize yourself with Linux disk and partition naming conventions
(covered in Chapter II of this document) and you should be ready to start.

Slackware Installation Notes

As previously mentioned, it is suggested that you start with Slackware if
this is your first foray into Linux and forensics AND you primary interest is

Barry J. Grundy 12

http://www.tldp.org/
http://www.e-fense.com/helix
http://www.asrdata2.com/
http://linuxiso.org/
http://linuxiso.org/
http://distrowatch.com/
http://linuxiso.org/
http://linuxlookup.com/linux_iso
http://www.slackware.org/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

forensics. If you do decide to give Slackware a shot, here are some simple
guidelines. The documentation provided on Slackware's site is complete and
easy to follow. Read there first...

Decide on standalone Linux or dual boot.

- Install Windows first in a dual boot system. If you have Vista, be careful
there are issues you should be aware of. Research dual booting with
Vista before proceeding.

- Determine how you want the Linux system to be partitioned.

- Do NOT create any extra partitions with Windows fdisk. Just leave the
space unallocated. Slackware will require you to utilize Linux fdisk or
another partitioning tool at the start of the install process.

READ through the installation documentation before you start the
process. Don't be in a hurry. If you want to learn Linux, you have to be willing
to read. For Slackware, have a look through the installation chapters of the
“Slackbook” located at hitp://lwww.slackbook.org . For a basic (but detailed)
understanding of how Linux works and how to use it, the Slackbook should be
your first stop.

1) Boot the Linux media. Slackware requires only the first two installation
disks (or the single DVD).

- Read each screen carefully.

- Accepting most defaults works.

- Your hardware will be detected and configured under most (if not all)
circumstances. On line support is extensive if you have problems.

- Keep in mind that if a piece of hardware causes problems during an
install, or is not detected during installation, this does not mean that it
will not work. Install the operating system and spend some time
troubleshooting. When learning Linux, Google is very often your best
friend (try http://lwww.google.com/linux).

- The Slackware install CD for the current version (12.1) will boot by
default using a kernel called “hugesmp.s”. It includes support for most
hardware by default and supports multiple CPUs. If it does not work,
then try the single CPU i486 kernel “huge.s”. Hit the “F2” key at the
initial “boot:” prompt for more info.

- Once the system is booted, you are presented with the “slackware login:”
prompt. READ THE ENTIRE SCREEN as instructed. Login as root, and
continue with your install routine.

- The main install routine for Slackware is started with the command
setup. You will need to ensure that you have your disk properly
partitioned before you enter the setup program.

- Take the time to read each screen completely as it comes up.

Barry J. Grundy 13

http://www.slackbook.org/html/book.html

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

2) Partition and format for Linux

At a minimum you will need two partitions. This step is normally part of
the installation process, or is covered in the distribution's
documentation.
- Root (/) as type “Linux Native”.
- Swap as type “Linux Swap” (use 2x your system memory as a
starting point for swap size).

You will hear a lot about using multiple partitions for different
directories. Don’t let that confuse you. There are arguments both for
and against using multiple partitions for a Linux file system. If you are
just starting out, use one large root (/) partition, and one swap partition
as described above.

You will partition your Slackware Linux system using fdisk or cfdisk.
The Slackbook has a detailed section on using fdisk to accomplish this.
(http://www.slackbook.org/html/book.htmI#INSTALLATION-PARTITIONING). In
fact, I would read the entire installation section of the Slackbook. It will
make the process much easier for you.

When asked to format the root partition, I would suggest selecting the
ext3 file system (Now default in Slackware 12.1).

3) Package installation (system)

When asked which packages to select for installation, it is usually safe for
a beginner to select “everything” or “full”. This allows you to try all the
packages, along with multiple X Window desktop environments. This
can take as much as 5 to 6GB on some of the newer distributions (5GB
on Slackware), however it includes all the software you are likely to need
for along time (including many “office” type applications, Internet, e-
mail, etc.). This is not really optimal for a forensic workstation, but for a
learning box it will give you the most exposure to available software for
experimentation.

4) Installation Configuration

Sound

- Usually automatic. If not, search the Web. The answer is out
there. Ifit does not work “out of the box” (as it should with most
hardware in Slackware), then try the following.

- There are many current distributions using the “Advanced Linux
Sound Architecture” (ALSA), including Slackware. Configuring
sound on Linux using ALSA can be quite easy. Once booted into
your new system, try running the command alsaconf to allow the
system to attempt automatic configuration. If that appears to
work (no obvious error messages), run alsamixer to adjust
speaker volume. These programs are run from a command
prompt. The alsaconf program is run as the root user, while
alsamixer can be run as a regular user.

Barry J. Grundy 14

http://www.slackbook.org/html/book.html#INSTALLATION-PARTITIONING

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

. Xorg (X Window system)
Know your hardware (video card, etc.).

- Ifyou choose to configure X during the installation routine, do
not click “yes” if the installation routine asks if you want X to start
automatically every time you system boots. This can make
problem solving difficult and results in less control over the
system. You can always start the GUI with startx from the
command line.

- By default, Xorg will use a standard VESA driver to run your X
Window system. You can attempt to get a more optimum
configuration after the installation by running X -configure,
which will write a new configuration file with settings tailored
more for your hardware. This will create a file called
xorg.conf.new which can then be copied to /etc/X11/xorg.conf.

- I'would suggest you use XFCE as you desktop manager. Feel free
to use others, but XFCE will provide a clean, uncluttered interface.

- You select XFCE as your desktop during the Slackware installation
by choosing “xinitrc.xfce” during the X setup portion. You can try
other window managers by running the command xwmconfig
and selecting a different one.

- Boot Method (the Boot loader...selects the OS to boot)
- LILO or GRUB.

- LILO is the default for Slackware. Some people find GRUB more
flexible and secure. GRUB can be installed later, if you like.

- Usually select the option to install LILO to the master boot record
(MBR). The presence of other boot loaders (as provided by other
operating systems) determines where to install LILO or GRUB.

- The boot loader contains the code that points to the kernel to be
booted. Check http://www.tldp.org for “multiOS” and
“multiboot” How-To documents.

- Create a user name for yourself — avoid using root exclusively.

- For more information, check the file CHANGES_AND_ HINTS.TXT on
the install CD, or at: http://slackware.osuosl.org/slackware-
12.1/CHANGES AND HINTS.TXT
This file is loaded with useful hints and changes of interest from one
release to another.

Linux is a multiuser system. It is designed for use on networks
(remember, it is based on Unix). The “root” user is the system administrator,
and is created by default during installation. Exclusive use of the “root” login is
DANGEROUS. Linux assumes that “root” knows what he or she is doing and
allows “root” to do anything he or she wants, including destroy the system.
Create a new user. Don’t log in as “root” unless you must. Having said this,
much of the work done for forensic analysis must be done as “root” to allow
access to raw devices and system commands.

Barry J. Grundy 15

http://slackware.osuosl.org/slackware-12.1/CHANGES_AND_HINTS.TXT
http://slackware.osuosl.org/slackware-12.1/CHANGES_AND_HINTS.TXT
http://www.tldp.org/
http://www.tldp.org/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Desktop Environment

When talking about forensic suitability, your choice of desktop system
can make a difference. First of all, the term “desktop environment” and
“window manager” are NOT interchangeable. Let's briefly clarify the
components of a common Linux GUI.

- X Window - This is the basic GUI environment used in Linux.
Commonly referred to as “X”, it is the application that provides the GUI
framework, and is NOT part of the OS. Xis a client / server program with
complete network transparency.

- Window Manager - This is a program that controls the appearance of
windows in the X Window system, along with certain GUI behaviors
(window focus, etc.). Examples are Kwin, Metacity, XFWM,
Enlightenment, etc.

- Desktop Environment— A combination of Window Manager and a
consistent interface that provides the overall desktop experience.
Examples are XFCE, GNOME, KDE, etc.
> The default Window Manager for KDE is Kwin.
> The default Window Manager for GNOME is Metacity
> The default Window Manager for XFCE is XFWM.

These defaults can be changed to allow for preferences in speed and
resource management over the desire for “eye-candy”, etc. You can also elect
to run a Window Manager without a desktop environment. For example, the
Enlightenment Window Manager is known for it's eye-candy and can be run
standalone, with or without KDE or GNOME, etc.

Slackware no longer comes with GNOME as an option, though it can be
installed like any other application. During the base Slackware installation,
you will be given a choice of KDE, XFCE, and some others. [would like to
suggest XFCE. It provides a cleaner interface for a beginner to learn on. Itis
leaner and therefore less resource intensive. You still have access to many KDE
utilities, if you elected to install KDE during package selection. You can install
more than one desktop and switch between them, if you like. The easiest way
to switch is with the xwmconfig command.

The Linux Kernel: Versions and Issues

The Linux kernel is the “brain” of the system. It is the base component
of the Operating System that allows the hardware to interact with and manage
other software and system resources.

Barry J. Grundy 16

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

In December of 2003, the Linux 2.6 kernel was released. This was
another milestone in the Linux saga, and all of the newer “mainstream”
distribution versions are based on the 2.6 kernel. Many of the changes in 2.6
over the previous 2.4 are geared toward enterprise use and scalability. The
newer kernel release also has a number of infrastructure changes that have a
significant impact on Linux as a forensic platform. For example, there is
enhanced support for USB and a myriad of other external devices. Read up on
udev for more information one one such change '. We will very briefly discuss
udev later in this section.

As with all forensic tools, we need to have a clear view of how any kernel
version will interact with our forensic platforms and subject hardware. Almost
all current distributions of Linux already come with a 2.6 kernel installed by
default. Slackware 12 has also moved to the 2.6 kernel series (2.6.24.5in 12.1).

Previous versions of this document suggested using an “older” (but
updated) version of the kernel (2.4 series) to account for infrastructure changes
in newer kernel versions that could adversely affect Linux employed as a
forensic platform. This version of the Linux Forensic Practitioner's Guide has
departed from that philosophy and we now use a distribution with a 2. 6 kernel
by default. Still, it is both interesting and important to understand the
implications of kernel choice on a forensic platform. So while we have moved
on to the 2.6 kernel, we will still cover the differences and caveats to using a
modern kernel.

Prior to the 2.6 series kernel, the developers maintained 2 separate
kernel “branches”. One was for the “stable” kernel, and the other was for
“testing”. Once released, the stable kernel was updated with bug fixes and was
considered a solid production kernel. The other kernel branch was the testing
branch and was used to incorporate innovations and updates to the kernel
infrastructure. The stable kernel had an even numbered secondary point
release, and the testing branch had an odd numbered secondary point release.

Stable branch Testing
Branch

2.0 2.1

2.2 2.3

2.4 2.5

2.6 22

1http:/ /www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

Barry J. Grundy 17

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The development of the 2.5 test kernel series resulted in the “stable” 2.6
series. Many of the improvements, once deemed stable, were “back ported” to
the 2.4 kernel. As a result, the 2.4 series is still considered modern and
supports much of the newer hardware currently in use.

So, what were the initial reservations about adhoc adoption of the 2.6
kernel in forensics, even though it's considered stable? You will notice from
the chart above that there is no current 2.7 testing branch. The current kernel
development scheme does not utilize a testing branch. This means that “new
innovations” and changes to kernel infrastructure get wrapped directly into 2.6
kernel updates. As a result, critical upgrades within the 2.6 kernel series have a
potential to break existing applications. There were many in the Linux
community (even outside of computer forensics) that saw the 2.6 kernel as a
fine system for desktop computers, but did not consider using itin a
production environment. Again, this does NOT mean that it was not suitable
for forensics, just that it required more testing and careful configuration with
the addition of more cutting edge features.

Of equal importance in selecting a Linux kernel for forensic use was the
interface that the kernel provides between the hardware and the end user. The
2.6 kernel includes a number enhancements that are designed specifically to
improve the overall Linux experience on the desktop. These enhancements, if
not properly configured and controlled, can result in a loss of user control over
devices, one of the primary reasons for using Linux for forensics in the first
place. Such obstacles can be overcome through proper configuration, but
rigorous testing, as with all forensic applications, is required. Knowing what
services to disable, and what affect this will have on the entire system is
imperative. While a complete discussion of these requirements is largely
beyond the scope of this guide, we will cover basic configuration in later
sections.

So we have finally arrived at a point where the 2.6 kernel is mainstream
and we will be using it in our forensic environment. The key to safe use (this
goes for ANY operating system) is knowledge of your environment and proper
testing. Please keep that in mind. You MUST understand how your hardware
and software interact with any given operating system before using it in a
“production” forensic analysis.

One of the greatest strengths Linux provides is the concept of “total

control”. This requires thorough testing and understanding. Don't lose sight
of this in pursuit of an “easy” desktop experience.

Barry J. Grundy 18

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Configuring Slackware 12: 2.6 kernel considerations

So, we've discussed the differences between the 2.4 and the 2.6 kernel.
There are infrastructure changes and “enhancements” to the 2.6 kernel that
can be more of a challenge to configure for a Linux beginner looking for a
stable and sound forensic platform.

In this section, we will focus on the minimum configuration
requirements for creating a sound forensic environment under current Linux
distributions using the 2.6 kernel. We will briefly discuss device node
management (udev), hardware abstraction (HAL) and message bus (d-bus)
daemons, and the desktop environment. In simplified terms, it is these
components that create the most obvious problems for forensic suitability in
the most current Linux distributions. The good news is that, being Linux, the
user has very granular control over these services. The control that we love
having with Linux is still there, we just need to grab some of it back from the
kernel (or the desktop, as the case may be).

udev

Starting with kernel version 2.6.13, Linux device management was
handed over to a new system called udev. Traditionally, the device nodes (files
representing the devices, located in the /dev directory) used in previous kernel
versions were static, that is they existed at all times, whether in use or not>. For
example, on a system with static device nodes we may have a primary SATA
hard drive that is detected by the kernel as /dev/sda. Since we have no IDE
drives, no drive is detected as /dev/hda. But when we look in the /dev directory
we see static nodes for all the possible disk and partition names for /dev/hda.
The device nodes exist whether or not the device is detected.

In the new system, udev creates device nodes “on the fly”. The nodes
are created as the kernel detects the device and the /dev directory is populated
in real time. In addition to being more efficient, udev also runs in user space.
One of the benefits of udev is that it provides for “persistent naming”. In other
words, you can write a set of rules (For a nice explanation of udev rules, see:
http://reactivated.net/writing udev rules.html) that will allow udev to
recognize a device based on individual characteristics (serial number,
manufacturer, model, etc.). The rule can be written to create a user-defined
link in the /dev directory, so that for example, my thumb drive can always be
accessed through an arbitrary device node name of my choice, like /dev/my-
thumb, if I so choose. This means that I don't have to search through USB
device nodes to find the correct device name if I have more than one external
storage device connected.

*We will not cover Devfs, a device management system that used dynamic nodes prior to udev.

Barry J. Grundy 19

http://reactivated.net/writing_udev_rules.html

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Udev is required for current 2.6 kernels. On Slackware, it runs as a
daemon from the startup script /etc/rc.d/rc.udev. We will discuss these startup
scripts in more detail later in this document. We will not do any specific
configuration for udev on our forensic computers at this time. We discuss it
here simply because it is a major change in device handling in the 2.6 kernel.
Udev does NOT involve itself in auto mounting or otherwise interacting with
applications. It simply provides a hardware to kernel interface.

Hardware Abstraction Layer

HAL refers to the Hardware Abstraction Layer. The HAL daemon
maintains information about devices connected to the system. In effect, HAL
acts as a “middle man” for device detection, in that it organizes device
information in a uniform format accessible to applications that want to either
access or react to a change is the status of a device (plugged in or unplugged,
etc.). The information that HAL makes available is object specific and provides
far more detail than normal kernel detection allows. As a result, applications
that receive information about a device from HAL can react in context. HAL
and udev are not connected, and operate independently of one another.
Where HAL describes a device in detail, for use by applications, udev simply
manages device nodes. In Slackware 12, HAL is run as a daemon from
letc/re.d/rc.hald. See the section titled “Service Startup Scripts” in Chapter 111
for more information on rc scripts and how to stop the service from auto-
starting.

d-bus

The system message bus, or d-bus, provides a mechanism for
applications to exchange information. For our purposes here, we will simply
state that d-bus is the communication channel used by HAL to send its
information to applications. In Slackware 12, d-bus is run as a daemon from
letc/re.d/rc.messagebus.

With some very fine configuration, it's possible to have HAL and d-bus
running and still maintain a sound forensic environment. For our purposes,
we will turn HAL and d-bus off. We do this because exhaustive configuration is
outside the scope of this document. We will make these adjustment in the
section “File Permissions” on page 41. It has been noted that turning d-bus off
is not strictly required (at this point). I suggest doing so for the sake of safety. I
urge you to test your own configurations.

Barry J. Grundy 20

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

2.6 Kernel and Desktops

One of the considerations when discussing Desktop Environments is its
integration with the HAL and d-bus services to allow for desktop auto-
mounting of removable media. KDE and GNOME are heavily integrated with
HAL/d-bus and users need to be aware of how to control this undesired
behavior in a forensic environment. Equally important is how to deal with
instability caused when expected messages from the OS are not received by a
polling application.

XFCE is a lighter weight (read: lighter on resources) desktop. And
although XFCE is also capable of integration with HAL and d-bus, it allows for
easier control of removable media on the desktop (search for thunar-volman).
While KDE and GNOME also allow for control of auto-mounting through
configuration dialogs, they are far more tightly integrated and arguably more
complex.

“Rolling your own” - The Custom Kernel

"Every forensic examiner should compile his own kernel, just like
every Jedi builds his own lightsaber."
-"The” Cory Altheide

At some point during your Linux education, you will want to learn how
to recompile your kernel. Why? Well...the above quote puts it quite nicely.
The kernel that comes with your distro of choice is often heavily patched, and
is configured to work with the widest variety of hardware possible. This gives
the stock distribution a better chance of working on a multitude of systems
right out of the box. Note that the Slackware kernel's are nicely generic and
quite suitable “out of the box” for forensic use. Also, be warned that user
customized kernels make for difficult troubleshooting and you will often be
asked to reproduce problems with a stock kernel before you can get specific
support. This is simply a matter of defining a common denominator when
addressing problems.

The actual steps for compiling a custom kernel are outside the scope of
this document, and have been covered elsewhere®. The concepts, however are
important for an overall understanding of how Linux works.

3 A quick Internet search for “linux custom kernel compile” or the like will provide a good start. Throw in the word
“forensic” for some more specific pointers.

Barry J. Grundy 21

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

As mentioned previously, the kernel provides the most basic interface
between hardware and the system software and resource management. This
includes drivers and other components that are actually small separate pieces
of code that can either be compiled as “modules” or compiled directly in the
kernel “image”.

There are two basic approaches to compiling a kernel. Static kernels are
built so that all of the drivers and desired features are compiled into the single
kernel image. Modular kernels are built such that drivers and other features
can be compiled as separate “object” files that can be loaded and unloaded “on
the fly” into a running system. More on handling kernel modules can be found
in Section II of this document, under “Using Modules”.

In short, you might find yourself in need of a kernel recompile as a result
of the fact that you require specific drivers or support that is not currently
included in your distribution's default kernel configuration. Or, after
becoming comfortable with Linux, you decide you want to try your hand at
actually configuring your custom kernel simply because you want to make it
more efficient or because you want to expand the support for hardware, file
systems, or partition table types that you might come across during an
investigation.

In any event, Forensics with Linux is all about control. Customizing
your kernel configuration, while an advanced skill, is the most basic form of
control you have in Linux (short of re-writing the source code itself). At some
point, this is something you will want to educate yourself further on.

Barry J. Grundy 22

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

II. Linux Disks, Partitions and the File System

Disks

Linux treats its devices as files. The special directory where these "files"
are maintained is "/dev".

DEVICE: FILE NAME:
» Floppy (a:) /dev/fd0
» Hard disk (master, IDE-0) /dev/hda
» Hard disk (slave, IDE-0) /dev/hdb
» Hard disk (master, IDE-1) /dev/hdc, etc.
e 1%tSCSI hard disk (SATA, USB) /dev/sda
e 2" SCSI hard disk /dev/sdb, etc.
Partitions
DEVICE: FILE NAME:
1t Hard disk (master, IDE-0) /dev/hda
e 1*Primary partition /dev/hdal
» 2" Primary partition /dev/hda2, etc.
* 1% Logical drive (on ext’d part) /dev/hdab
» 2" Logical drive /dev/hdas, etc.
2" Hard disk (slave, IDE-0) /dev/hdb
e 1*Primary partition /dev/hdbl, etc.
CDROM (ATAPI) or 3" disk (mstr, IDE-1) /dev/hdc
1%t SCSI disk (or SATA, USB, etc.) /dev/sda
e 1*Primary partition /dev/sdal, etc.

The pattern described above is fairly easy to follow. If you are using a
standard IDE disk (or standard ATAPI CDROM drive), it will be referred to as
hdx where the "x" is replaced with an "a" if the disk is connected to the primary
IDE controller as master and a "b" if the disk is connected to the primary IDE
controller as a slave device. In the same way, the IDE disks (or CDROM)
connected to the secondary IDE controller as master and slave will be referred
to as hdc and hdd respectively.

SCSI and Serial ATA (SATA) disks will be referred to as sdx. In the case of
SCSI disks, they are assigned letters in the order in which they are detected.
This includes USB and Firewire. For example, a primary SATA disk will be
assigned sda. If you attach a USB disk or a thumb drive it will normally be
detected as sdb, and so on.*

“You may run across older distributions that support devfs which uses a different naming scheme. Don'’t let this
confuse you. The pattern described above is still supported through “links” for compatibility. See
http:/lwww.atnf.csiro.aul/people/rgooch/linux/docs/devfs.html for more information.

Barry J. Grundy 23

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The fdisk program can be used to create or list partitions on a supported
device. This is an example of the output of fdisk on a dual boot system using
the “list” option (-1 [dash “el”)]):

root@rock:~# fdisk -1 /dev/hda

Disk /dev/hda: 60.0 GB, 60011642880 bytes
255 heads, 63 sectors/track, 7296 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdal * 1 654 5253223+ 7 HPFS/NTFS
/dev/hda2 655 2478 14651280 7 HPFS/NTFS
/dev/hda3 2479 7296 38700585 5 Extended
/dev/hdab 2479 4303 14659281 83 Linux
/dev/hda6 4304 4366 506016 82 Linux swap
/dev/hda7 4367 7296 23535193+ ¢ W95 FAT32 (LBA)

fdisk -1 /dev/hdx gives you a list of all the partitions available on a particular
drive, in this case and IDE drive). Each partition is identified by its Linux
name. The "boot flag" is indicated, and the beginning and ending cylinders for
each partition is given. The number of blocks per partition is displayed.
Finally, the partition "Id" and file system type are displayed. To see a list of
valid types, run fdisk and at the prompt type "1" (the letter “el”). Do not
confuse Linux fdisk with DOS fdisk. They are very different. The Linux version
of fdisk provides for much greater control over partitioning.

Remember that the partition type identified in the last column, under
“System” has nothing to do with the file system found on that partition. Do not
rely on the partition type to determine the file system. On most normal
systems, a type “c” (W95 FAT32) partition type will contain a FAT32 partition,
but not always. Also, consider partitions of type 83 (Linux). Type 83 partitions
can normally hold EXT2, EXT3, ReiserFS, or any number of other file system
types. We will discuss file system identification later in this document.

BEFORE FILE SYSTEMS ON DEVICES CAN BE USED, THEY MUST BE
MOUNTED! Any file systems on partitions you define during installation will
be mounted automatically every time you boot. We will cover the mounting of
file systems in the section that deals with Linux commands, after you have
some navigation experience.

Keep in mind, that even what not mounted, devices can still be written to.

Simply not mounting a file system does not protect it from being inadvertently
changed through your actions.

Barry J. Grundy 24

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Mounting file systems on some types of external devices, which we will
come to later in this document, may require us to delve a little deeper into
modules

Using modules — Linux Drivers

It’s difficult to decide when to introduce modules to a new user. The
concept can be a little confusing, but “out of the box” Linux distributions rely
heavily on modules for device and file system support. For this reason, we will
make an effort to get familiar with the concept early on.

As discussed in the previous section, modules are really just “drivers”
that can be loaded and unloaded from the kernel dynamically. They are object
files (*.ko for the 2.6 kernel) that contain the required driver code for the
supported device or option. Modules can be used to provide support for
everything from USB controllers and network interfaces to file systems.

The various modules available on your system are located in the
/lib/modules/<KERNEL-VERSION>/ directory. Note that the current kernel
version running on your system can be found using the command uname -r.

There are, in general, three ways that driver code is loaded in Linux:

e Driver code is compiled directly into the kernel. The code is part of
the kernel image that is loaded when the computer boots.
Supported devices are recognized and configured as the OS loads.

e Modules are loaded at boot time through the actions of udev, which
handles “hotplug” events. After the kernel is loaded, udev “events”
are triggered and the proper modules are automatically loaded. We
will cover this in more detail in the chapter covering system startup.
Recall that udev handles the device node management.

e Modules are manually loaded by the user, as needed.

In cases where the driver code is not automatically loaded, modules can
be installed and removed from the system “on the fly” using the following
commands (as root):

modprobe -an intelligent module loader
rmmod -to remove the module
Ismod -to get a list of currently installed modules

For example, to get USB support for a USB thumb drive on some
systems, you may need to load a couple of modules. With the USB device
plugged in, we can install the needed modules (ehci_hcd for many USB 2.0
controllers, and usb-storage for the storage interface) with:

Barry J. Grundy 25

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

modprobe ehci_hcd (depending on your USB controller)
modprobe usb-storage

Note that while the module is named with a “.ko” extension, we do not
include that in the insertion command.

We only need to install these drivers if the kernel does not have the
support compiled in, or if the module is not loaded automatically. Note that on
a stock Slackware 12.1 system, the support for USB is compiled into the kernel
and loading modules is not needed.

So how would you know if you needed to load modules? To check and
see if the modules are already loaded, you can use the Ismod command to look
for the driver name. Use grep to show only lines with specific text. We will
cover grep in far more detail later on.

root@rock:~# lsmod | grep ehci_hcd
root@rock:~#

In this case, the command returns nothing. This might indicate that the
driver is not loaded or it might indicated that the driver is not a module, but is
compiled directly into the kernel. I can check this using the dmesg command
and grep as well. The dmesg command replays the system startup messages

root@rock:~# dmesg | grep ehci_hcd

ehci_hcd 0000:00:1d. EHCI Host Controller

ehci_hcd 0000:00:1d. new USB bus registered, assigned bus number 1
ehci_hcd 0000:00:1d. debug port 1

ehci_hcd 0000:00:1d. irg 20, io mem Ox80004000

ehci_hcd 0000:00:1d. USB 2.0 started, EHCI 1.00, driver 10 Dec 2004

N NN NN

The output of the above commands shows us that support for the USB
2.0 host controller is already loaded (as shown in the dmesg output), but not as
a module (as shown in the Ismod output).

While this subject can be a bit daunting at first, just keep in mind that an
attached device may or may not work on a given system until the proper
module is installed. Knowing how to check for existing support, and how to
insert a module if needed is important.

Barry J. Grundy 26

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Device Recognition

Another common question arises when a user plugs a device in a Linux
box and receives no feedback on how (or even if) the device was recognized.
One easy method for determining how and if an inserted device is registered is
to use the previously introduced dmesg command.

For example, if I plug a USB thumb drive into a Linux computer, and the
computer is running a HAL enabled desktop, I may well see an icon appear on
the desktop for the disk. I might even see a folder open on the desktop
allowing me to access the files automatically. Obviously, on a system we are
using as a forensic platform, we may want to minimize this sort of behavior
(more on that later...).

So when there is no visible feedback, where do we look to see what
device node was assigned to our disk (/dev/sda, /dev/sdb, etc.)? How do we
know if it was even detected? Again, this question is particularly pertinent to
the forensic examiner, since we will likely configure our system to be a little less
“helpful”.

Plugging in the thumb drive and running the dmesg command provides
me with the following output:

root@rock:~# dmesg
<previous output>
scsi 2:0:0:0: Direct-Access SanDisk U3 Titanium 2.16 PQ: ©
ANSI: 2
sd 2:0:0:0: [sda] 1994385 512-byte hardware sectors (1021 MB)
sd 2:0:0:0: [sda] Write Protect is off
sd 2:0:0:0: [sda] Mode Sense: 03 00 00 00
sd 2:0:0:0: [sda] Assuming drive cache: write through
sd 2:0:0:0: [sda] 1994385 512-byte hardware sectors (1021 MB)
sd 2:0:0:0: [sda] Write Protect is off
sda: sdal
sd 2:0:0:0: [sda] Attached SCSI removable disk
scsi 2:0:0:1: CD-ROM SanDisk U3 Titanium 2.16 PQ: ©
ANSI: 2
sr@: scsi3-mmc drive: 8x/40x writer xa/form2 cdda tray
sr 2:0:0:1: Attached scsi CD-ROM sr0
usb-storage: device scan complete

The important information is in bold. Note that this particular thumb
drive (a SanDisk U3) provides two parts, the storage volume with a single
partition (/dev/sdal), and an emulated CDROM device which was detected as
/dev/sr0. SCSI CDROM devices are recognized as srx or scdx.

Barry J. Grundy 27

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The File System

Like the Windows file system, the Linux file system is hierarchical. the
"top" directory is referred to as "the root" directory and is represented by "/".
Note that the following is not a complete list, but provides an introduction to

some important directories.

/ (“root” not to be confused with “/root”)

|_bin

| |_ <files> 1s, chmod, sort, date, cp, dd
|_boot

| |_<files> vmlinuz, system.map

|_dev

| |_<devices> hd*, tty*, sd*, fd*, cdrom
|_etc

| |_X11

| |_ <files> XF86Config, X

| |_<files> lilo.conf, fstab, inittab, modules.conf
|_home

| |_barry (your user’s name is in here)

| |_<files> .bashrc, .bash_profile, personal files
| |_other users

|_mnt

| |_cdrom

| |_floppy

| |_other temporary mount points
|_media

| |_cdromO

| |_dvdo

| |_other standard media mount points
|_root

| |_<root user's home directory>

|_sbin

| |_<files> shutdown, cfdisk, fdisk, insmod
|_usr

| |_local

| |_lib

| |_man

|_var

| |-log

On most Linux distributions, the directory structure is organized in the

same manner. Certain configuration files and programs are distribution

dependent, but the basic layout is similar to this.

Barry J. Grundy

28

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Note that the directory “slash” (/) is opposite what most people are used
to in Windows (\).

Directory contents can include:

e /bin -Common commands.

» /boot -Files needed at boot time, including the kernel images pointed
to by LILO (the LInux LOader) or GRUB.

 /dev -Files that represent devices on the system. These are actually
interface files to allow the kernel to interact with the hardware and the
file system.

« Jetc -Administrative configuration files and scripts.

 /home -Directories for each user on the system. Each user directory
can be extended by the respective user and will contain their personal
files as well as user specific configuration files (for X preferences, etc.).

« /mnt -Provides temporary mount points for external, remote and
removable file systems.

* /media -Provides a standard place for users and applications to mount
removable media. Part of the new File System Hierarchy Standard.

* /root -Therootuser's home directory.

 /sbin -Administrative commands and process control daemons.

e Jusr -Contains local software, libraries, games, etc.

e /var -Logs and other variable file will be found here.

Another important concept when browsing the file system is that of
relative versus explicit paths. While confusing at first, practice will make the
idea second nature. Just remember that when you provide a pathname to a
command or file, including a “/” in front means an explicit path, and will
define the location starting from the top level directory (root). Beginning a
pathname without a “/”indicates that your path starts in the current directory
and is referred to as a relative path. More on this later.

One very useful resource for this subject is the File System Hierarchy
Standard (FHS), the purpose of which is to provide a reference for developers
and system administrators on file and directory placement. Read more about it
at http://www.pathname.com/fhs/

Barry J. Grundy 29

http://www.pathname.com/fhs/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

III. The Linux Boot Sequence (Simplified)

Booting the kernel

The first step in the (simplified) boot up sequence for Linux is loading
the kernel. The kernel image is usually contained in the /boot directory. It can
go by several different names...

* bzlmage
« vmlinuz

Sometimes the kernel image will specify the kernel version contained in
the image, i.e. bzImage-2.6.24. Very often there is a soft link (like a shortcut) to
the most current kernel image in the /boot directory. It is normally this soft link
that is referenced by the boot loader, LILO (or GRUB).

The boot loader specifies the “root device” (boot drive), along with the
kernel version to be booted. For LILO, this is all controlled by the file
/etc/lilo.conf. Each “image="section represents a choice in the boot screen.

This is an example of a lilo.conffile:

root@rock:~# cat /etc/lilo.conf

boot=/dev/hda

map=/boot/map

install=/boot/boot.b

prompt

timeout=50

image=/boot/bzImage < - Defines the Linux kernel to boot

label=1inux < - Menu choice in LILO
root=/dev/hda3 < - Where the root file system is found
read-only
other=/dev/hdal < - Defines alternate boot option
label=WinXP < - Menu choice in LILO

table=/dev/hda

In the case of GRUB, each section beginning with “title” is a choice for
booting and can include Linux as well as other operating systems, including
Windows. Note again the reference to the kernel location, and the “root
device” (where the root file system is located). GRUB starts it’s counting from
0, so where you see “hd0,0” it is referring to the first IDE disk, followed by the
first partition. See the info or man page for GRUB.

® The actual /etc/lilo.conffile on your system will be much more cluttered with comments (lines
starting with a “#”. Comments have been removed from this example for readability.

Barry J. Grundy 30

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

In the following GRUB example, there will be two different Linux kernel
choices offered in the boot menu. They all use the same root file system, but
differ in the kernel image loaded from the /booft partition.

root@rock:~# cat /boot/grub/grub.conf

boot=/dev/hda

default=0

timeout=10

splashimage=(hd0, @)/boot/grub/splash.xpm.gz

title Linux (2.6.24) <- “title” sections define a boot menu choice
root (hde,0) <- “root” device (1t hard drive and 1%t partition)
kernel /boot/bzImage ro root=/dev/hdal <- kernel to boot

title Linux-old (2.4.33)
root (hdo,0)
kernel /boot/bzImage-2.4.33 ro root=/dev/hdal

Once the system has finished booting, you can see the kernel messages
that “fly” past the screen during the booting process with the command
dmesg. We discussed this command a little when we talked about device
recognition earlier. As previously mentioned, this command can be used to
find hardware problems, or to see how a removable (or suspect) drive was
detected, including its geometry, etc. The output can be piped through a
paging viewer to make it easier to see (in this case, dmesg is piped through less
on my Slackware system.):

root@rock:~# dmesg | less

Linux version 2.6.24.5-smp (root@midas) (gcc version 4.2.3) #2 SMP Wed

Apr 30 13

:41:38 CDT 2008

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - O000000EOOO09fCcOO (usable)
BIOS-e820: 000000000009fcO0 - OOOOOOOOOOOaOO00 (reserved)
BIOS-e820: 00000000000TO000 - OOOOOOEEEO1O0000 (reserved)
BIOS-e820: 0000000000100000 - 0000000O1fffEEEO (usable)
BIOS-e820: 000000001fffOO00 - OOOOOEEO20000000 (ACPI data)
BIOS-e820: 00000000fffcOO00 - OOOOOOO1OOOO0000 (reserved)
OMB HIGHMEM available.

511MB LOWMEM available.

Entering add_active_range(0, 0, 131056) 0 entries of 256 used
<continues>

Barry J. Grundy 31

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Initialization
The next step in the boot sequence starts with the program /sbin/init.
This program really has two functions:

 initialize the runlevel and startup scripts
» terminal process control (respawn terminals)

In short, the init program is controlled by the file /etc/inittab. It is this
file that controls your runlevel and the global startup scripts for the system.

Runlevel

The runlevel is simply a description of the system state. For our
purposes, it is easiest to say that (for Slackware, at least — other systems, like
Fedora Core will differ):

« runlevel 0 = shutdown

« runlevel 1 = single user mode

« runlevel 3 = full multiuser mode / text login

» runlevel 4 = full multiuser / X11 / graphical login®

* runlevel 6 = reboot

In the file /etc/inittab you will see a line similar to:

id:3:initdefault:

root@rock:~#less /etc/inittab

#

/etc/inittab: This file describes how the INIT process should set up
the system in a certain run-level.

#

Default runlevel.
id:3:initdefault:

System initialization, (runs when system boots).
si:S:sysinit:/etc/rc.d/rc.S
<continues>

It is here that the default runlevel for the system is set. If you want a text
login (which I would strongly suggest), set the above value to “3”. This is the
default for Slackware. With this default runlevel, you use startx to get to the X
Window GUI system. If you want a graphical login, you would edit the above
line to contain a “4”.

®This is largely distribution dependent. In Fedora Core, run level 5 provides a GUI login. In Slackware, it's run level 4.

Barry J. Grundy 32

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

Global Startup Scripts

After the default run level has been set, init (via /etc/inittab) then runs
the following scripts:

letc/re.d/re.S - handles system initialization, file system mount and
check, PNP devices, etc.

letc/rc.dfrc.X - where X is the run level passed as an argument by init.
In the case of mulit-user (non GUI) logins (run level 2 or 3), this is
rc.M. This script then calls other startup scripts (various services,
etc.) by checking to see if they are “executable”.

letc/rc.dfrc.local - called from within the specific run level scripts,
rc.local is a general purpose script that can be edited to include
commands that you want started at bootup (sort of like autoexec.bat).
letc/re.dfrc.local_shutdown - This file should be used to stop any
services that were started in rc.local.

Service Startup Scripts

Once the global scripts run, there are “service scripts” in the /etc/rc.d/
directory that are called by the various runlevel scripts, as described above,
depending on whether the scripts themselves have “executable” permissions.
This means that we can control the boot time initialization of a service by
changing it's executable status. More on how to do this later. Some examples
of service scripts are:

letc/rc.d/rc.inet]l - handles network interface initialization
letc/rce.dfrc.inet2 — handles network services start. This script
organizes the various network services scripts, and ensures that they
are started in the proper order.

letc/re.dfrc. pcmcia - starts PC card services.

letc/re.dfrc.sendmail — starts the mail server. Controlled by rc.iner2.
letc/re.d/rc.sshd — starts the OpenSSH server. Also controlled by
re.inet2.

letc/re.dfrc. messagebus - starts d-bus messaging services.

letc/re.dfrc. hald - starts hardware abstraction layer daemon services.
Jetc/re.dfrc. udev - populates the /dev directory with device nodes,
scans for devices, loads the appropriate kernel modules, and
configures the devices.

Have a look at the /etc/rc.d directory for more examples. Note thatin a
standard Slackware install, you directory listing will show executable scripts as
green in color (in the terminal) and followed by an asterisk (*).

Barry J. Grundy 33

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Again, this is Slackware specific. Other distributions differ (some differ
greatly!), but the concept remains consistent. Once you become familiar with
the process, it will make sense. The ability to manipulate startup scripts is an
important step in your Linux learning process.

Bash

bash (Bourne Again Shell) is the default command shell for most Linux
distros. It is the program that sets the environment for your command line
experience in Linux. The functional equivalent in DOS would be
command.com. There are a number of shells available, but we will cover bash
here.

There are actually quite a few files that can be used to customize a user’s
Linux experience. Here are some that will get you started.

» Jetc/profile - This is the global bash initialization file for interactive login
shells. Edits made to this file will be applied to all bash shell users. This
file sets the standard system path, the format of the command prompt
and other environment variables.

« Note that changes made to this file may be lost during upgrades.
Another method is to create an executable file in the directory
letc/profile.d. Executable files placed in that directory are run at
the end of /etc/profile.

» /home/$USER/.bash_profile” - This script is located in each user’s home
directory ($USER) and can be edited by the user, allowing him or her to
customize their own environment. It is in this file that you can add
aliases to change the way commands respond. Note that the dot in front
of the filename makes it a “hidden” file.

» /home/$USER/.bash_history— This is an exceedingly useful file for a
number of reasons. It stores a set number of commands that have
already been typed at the command line (default is 500). These are
accessible through either “reverse shells” or simply by using the “up”
arrow on the keyboard to scroll through the history of already-used
commands. Instead of re-typing a command over and over again, you
can access it from the history.

« From the perspective of a forensic examiner, if you are examining
a Linux system, you can access each user's (don't forget root)
.bash_history file to see what commands were run from the
command line. Remember that the leading “.” in the file name
signifies that it is a hidden file.

7 In bash we define the contents of a variable with a dollar sign. $USER is a variable that represents the name of the
current user. To see the contents of shell individual variables, use “echo $VARNAME”.

Barry J. Grundy 34

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Keep in mind that the default values for ./bash_history (number of
entries, history file name, etc.) can be controlled by the user(s). Read man bash
for more detailed info.

The bash startup sequence is actually more complicated than this, but
this should give you a starting point. In addition to the above files, check out
/home/$USER/.bashrc. The man page for bash is an interesting (and long)
read, and will describe some of the customization options. In addition, reading
the man page will give a good introduction to the programming power
provided by bash scripting. When you read the man page, you will want to
concentrate on the INVOCATION section for how the shell is used and basic
programming syntax.

Barry J. Grundy 35

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

IV. Linux Commands

Linux at the terminal

Directory listing =

Is list files.

Is -F classifies files and directories.

Is-a show all files (including hidden).

Is -1 detailed file list (long view).

Is-lh detailed list (long, with “human readable” file sizes).
root@rock:~# 1ls -1
total 3984
drwxr-xr-x 3 root root 4096 Feb 15 2004 Backup_config
drwxr-xr-x 2 root root 4096 Jun 16 16:10 Desktop
drwx------ 2 root root 4096 Jan 27 2004 Documents
drwxr-xr-x 3 root root 4096 Aug 10 14:26 VMware
-rw-r--r-- 1 root root 175 Sep 26 2003 investigator.bjg
- rwWXrwX- - - 1 root root 2740 Dec 15 2003 k.key
-rwWXr-Xr-x 1 root root 107012 Nov 29 2003 scanModem
<continues>

We will discuss the meaning of each column in the Is -1 output later in
this document.

Change directory =
cd <dir> change directory to <dir>.
cd (by itself) shortcut back to your home directory.
cd.. up one directory (note the space between “cd” and “..”.
cd - back to the last directory you were in.
cd /dirname change to the specified directory. Note that the

addition of the “/” in front of the directory implies
an explicit (absolute) path, not a relative one. With
practice, this will make more sense.

cd dirname change to the specified directory. The lack ofa “/”
in front of the directory name implies a relative path
meaning dirname is a subfolder of our current
directory.

Copy
cp
cp sourcefile destinationfile copy a file.

Clear the Terminal

clear clears the terminal screen of all text and returns a
prompt.

Barry J. Grundy 36

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Move a file or directory
mv
mv sourcefile destinationfile = move or rename a file.

Delete a file or directory

rm

rm filename deletes a file.

rm -r recursively deletes all files in
directories and subdirectories.

rmdir remove directories.

rm -f do not prompt for file removal

Display command help
man

man command displays a "manual” page for the specified
command. Use "q" to quit. VERY USEFUL.

If you want to find information about a command called find, including
its usage, options, output, etc., then you would use the “man page” for the
command find :

root@rock:~# man find
FIND(1L) FIND(1L)

NAME
find - search for files in a directory hierarchy

SYNOPSIS
find [path...] [expression]

DESCRIPTION

This manual page documents the GNU version of find. find
searches the directory tree rooted at each given file name by
evaluating the given expression from left to right, according to the
rules of precedence (see section OPERATORS), until the outcome is
known (the left hand side is false for and operations, true for or),
at which point find moves on to the next file name.
<continues>

Create a directory
mkdir
mkdir directoryname creates a directory. Again, remember the
difference between a relative and explicit path
here.

Barry J. Grundy 37

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Display the contents of a file
cat or more or less
cat filename The simplest form of file display, cat streams the
contents of a file to the standard output (usually the
terminal). cat actually stands for “concatenate”. This
command can also be used to add files together (useful
later on...). For example:

cat filel file2 > file3

Takes the contents of filel and file2 and streams the
output which is redirected to a single file, file3. This
effectively adds the two files into one single file (the
original files remain unchanged).

more filename displays the contents of a file one page at a time.
Unlike its DOS counterpart, Linux more takes
filenames as direct arguments.

less filename less is a better more. Supports scrolling in both
directions, and a number of other powerful features.
less is actually the GNU version of more, and on
many systems you will find that more is actually a

« ”»

link to less. Use “q” to exit a less session.
Note that you can string together several options. For example:

Is -aF

bgrundy@rock:~/workdir $ 1s -aF
v Intrc arlist dirl/ doci@ rmscript* workfiles/
../ .tschr cpscript* dir2/ mystuff/ topsc@

..will give you a list of all files (-a), including hidden files, and
file/directory classification (-F, which shows "/" for directories, "*" for
executables, and "@" for links).

Barry J. Grundy 38

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Additional useful commands

grep - search for patterns.
grep pattern filename

grep will look for occurrences of pattern within the file filename. grep is
an extremely powerful tool. It has hundreds of uses given the large
number of options it supports. Check the man page for more details.
We will use grep in our forensic exercises later on.

find -allows you to search for a file (wild cards — actually “expressions”
permitted). To look for your fstab file, you might try:

root@rock:~# find / -name fstab -print
/etc/fstab

This means "find, starting in the root directory (/), by name, fstab and
print the results to the screen". find also allows you to search by file
type or even file times (actually inode times). The power of the find
command should not be underestimated. More on this tool later.

pwd -prints the present working directory to the screen. The following
example shows that we are currently in the directory /root.

root@rock:~# pwd
/root

file -categorizes files based on what they contain, regardless of the name
(or extension, if one exists). Compares the file header to the "magic"
file in an attempt to ID the file type. For example:

root@rock:~# file snapshot01.gif
snapshot01.gif: GIF image data, version 87a, 800 x 600

ps -list of current processes. Gives the process ID number (PID), and the
terminal on which the process is running.

ps ax -shows all processes (a), and all processes without an associated

terminal (x). Note the lack of a dash in front of the options. See the man
page for info on this departure from our previous convention.

Barry J. Grundy 39

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux
root@rock:~# ps ax
PID TTY STAT TIME COMMAND
1? S 0:00 init [3]
2 ? SN 0:00 [ksoftirqd/0]
37 S< 0:00 [events/0]
4 ? S< 0:00 [khelper]
1966 ? Ss 0:00 /usr/sbin/syslogd -m 0
1973 72 Ss 0:00 /usr/sbin/klogd -c 3 -2
2009 ? Ss 0:00 /usr/sbin/acpid -c /etc/acpi/events
2109 ? Ss 0:00 /usr/sbin/cupsd
<continues>
strings -prints out the readable characters from a file. Will print out
strings that are at least four characters long (by default)from a file.
Useful for looking at data files without the originating program,
and searching executables for useful strings, etc. More on this
forensically useful command later.
chmod -changes the permissions on a file. (See the section in this
document on permissions).
chown -changes the owner of a file in much the same way as chmod
changes the permissions.
shutdown -this command MUST be used to shutdown the machine and

cleanly exit the system. This is not DOS. Turning off the machine
at the prompt is not allowed and can damage your file system (in
some cases)®. You can run several different options here (check
the man page for many more):

shutdown -r now -will reboot the system now (change to
runlevel 6).

shutdown -h now -will halt the system. Ready for power down
(change to runlevel 0).

8 This has become much less of an issue with the newer journaled file systems used by Linux.

Barry J. Grundy

40

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

File Permissions

Files in Linux have certain specified file permissions. These permissions
can be viewed by running the Is -1 command on a directory or on a particular
file. For example:

root@rock:~# 1ls -1 myfile
-rwWXr-Xr-Xx 1 root root 1643 Jan 19 23:23 myfile

If you look close at the first 10 characters, you have a dash (-) followed
by 9 more characters. The first character describes the type of file. A dash (-)
indicates a regular file. A "d" would indicate a directory, and "b" a special
block device, etc.

First character of Is -1 output:

= regular file

= directory

= block device (SCSI or IDE disk)

= character device (serial port)

link (points to another file or directory)

»—IOU'Q_I

The next 9 characters indicate the file permissions. These are given in
groups of three:

Owner Group Others
rwx rwx rwx

The characters indicate

r = read
W = write
X = execute

So for the above myfile we have
rwx r-x r-x

This gives the file owner read, write and execute permissions (rwx), but
restricts other members of the owner’s group and users outside that group to
only read and execute the file (r-x). Write access is denied as symbolized by the

Now back to the chmod command. There are a number of ways to use
this command, including explicitly assigning r, w, or x to the file. We will cover
the octal method here because the syntax is easiest to remember (and I find it
most flexible). In this method, the syntax is as follows

Barry J. Grundy 41

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

chmod octal filename

octal is a three digit numerical value in which the first digit represents
the owner, the second digit represents the group, and the third digit represents
others outside the owner's group. Each digit is calculated by assigning a value
to each permission:

read (1) =4
write (w) =
execute (x) =1

For example, the file filename in our original example has an octal
permission value of 755 (rwx =7, r-x =5, r-x=5). If you wanted to change the file
so that the owner and the group had read, write and execute permissions, but
others would only be allowed to read the file, you would issue the command:

chmod 774 filename
4M)+2(w)+1(x)=7
4r)+2w)+1(x)=7
4(r)+0(-)+0(-) =4

A new long list of the file would show:

root@rock:~# chmod 774 myfile
root@rock:~# 1ls -1 myfile
- rWXrwXr - - 1 root root 1643 Jan 19 23:23 myfile

(rwx=7, rwx=7, r--=4)

Let us look at a practical example of changing permissions. Earlier in
this document we discussed the system initialization process. Part of that
process is the execution of “rc”scripts that handle system services. Recall that
the file /etc/inittab invokes the appropriate run level scripts in the /etc/rc.d/
directory. In turn, these scripts test various service scripts in the /etc/rc.d/
directory for executable permissions. If the script is executable, it is invoked
and the service is started. The test inside the rc.M (mulituser init script) for the
PCMCIA service looks like this:

root@rock:~# cat /etc/rc.d/rc.M

if [-x /etc/rc.d/rc.pcmcia]; then

. /etc/rc.d/rc.pcmcia start
<continues>

Barry J. Grundy 42

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The code shown above is an “if / then” statement where the brackets
signify the test and the -x checks for executable permissions. So it would read:

“if the file /etc/rc.d/rc.pcmcia is executable, then execute the command
/etc/rc.d/rc.pcmcia start”.

Note that the rc scripts can have either start, stop or restart passed as
arguments in most cases.

Alook at the permissions of /etc/rc.d/rc.pcmcia shows that it is not
executable, and so will not start at system initialization:

root@rock:~# 1s -1 /etc/rc.d/rc.pcmcia
-rw-r--r-- 1 root root 5090 2006-08-16 16:48 /etc/rc.d/rc.pcmcia

To change the executable permissions to allow PCMCIA services to start
at boot time, I execute the following:

root@rock:~# chmod 755 /etc/rc.d/rc.pcmcia
root@rock:~# 1ls -1 /etc/rc.d/rc.pcmcia
-rwxr-xr-x 1 root root 5090 2006-08-16 16:48 /etc/rc.d/rc.pcmcia*

The directory listing shows that I have changed the executable status of
the script. Depending on your color terminal settings, you may also see the
color of the file change and an asterisk appended to the name.

You can use this technique to go through your /etc/rc.d/ directory to
turn off those services that you do not need. Since I'm not running a laptop,
and don't need PCMCIA services or wireless support:

root@rock:~# chmod 644 /etc/rc.d/rc.pcmcia
root@rock:~# chmod 644 /etc/rc.d/rc.wireless

Since we are running a 2. 6 kernel on Slackware, and we want a
forensically sound system in as simple a manner as possible here, you should
do the same to the rc.hald (HAL) and rc.messagebus (d-bus) service scripts.
This will prevent system messages from accessing and auto-mounting storage
devices when they are detected. This does NOT prevent them from being
detected...Just from being mounted and/or opened (normally by virtue of
desktop software).

root@rock:~# chmod 644 /etc/rc.d/rc.hald
root@rock:~# chmod 644 /etc/rc.d/rc.messagebus

The changes will take effect next time you boot.

Barry J. Grundy 43

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Metacharacters

The Linux command line (actually the bash shell in our case) also
supports wild cards (metacharacters)
« *for multiple characters (including ".").
« ?for single characters.
» [] for groups of characters or a range of characters or numbers.

This is a complicated and very powerful subject, and will require further
reading... Refer to “regular expressions” in your favorite Linux text, along with
“globbing” or “shell expansion”. There are important differences that can
confuse a beginner, so don’t get discouraged by confusion over what “*” means
in different situations.

Command Hints

1. Linux has a history list of previously used commands (stored in the file
named .bash_history in your home directory). Use the keyboard arrows
to scroll through commands you've already typed.

2. Linux supports command line editing. You can used the cursor to

navigate a previous command and correct errors.

Linux commands and filenames are CASE SENSITIVE.

Learn output redirection for stdout and stderr (“>” and “2>”). More on
this later.

Linux uses “/” for directories, DOS uses “\”.

Linux uses “-“ for command options, DOS uses “/”.

Use “q” to quit from less or man sessions.

To execute commands in the current directory (if the current directory is
not in your PATH), use the syntax "./command". This tells Linux to look
in the present directory for the command. Unless it is explicitly
specified, the current directory is NOT part of the normal user path,
unlike DOS.

-

© N

Pipes and Redirection

Like DQOS, Linux allows you to redirect the output of a command from
the standard output (usually the display or "console") to another device or file.
This is useful for tasks like creating an output file that contains a list of files on
a mounted volume, or in a directory. For example:

root@rock:~# 1ls -al > filelist.txt

The above command would output a long list of all the files in the
current directory. Instead of outputting the list to the console, a new file called
"filelist.txt" will be created that will contain the list. If the file "filelist.txt"

Barry J. Grundy 44

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

already existed, then it will be overwritten. Use the following command to
append the output of the command to the existing file, instead of over-writing
it:

root@rock:~# 1ls -al >> filelist.txt

Another useful tool similar to that available on DOS is the command
pipe. The command pipe takes the output of one command and "pipes" it
straight to the input of another command. This is an extremely powerful tool
for the command line. Look at the following process list (partial output
shown):

root@rock:~# ps ax
PID TTY STAT TIME COMMAND
1? S 0:00 init [3]
2 ? SN 0:00 [ksoftirqd/0]
37 S< 0:00 [events/0]
4 ? S< 0:00 [khelper]
5 2 S< 0:00 [kacpid]
26 ? S< 0:00 [kblockd/0]
36 ? S< 0:00 [vesafb]
45 ? S 0:00 [pdflush]
46 ? S 0:00 [pdflush]
48 ? S< 0:00 [aio/0]
2490 tty1l S 0:00 bash
3287 pts/0 Ss 0:00 -bash
3325 pts/0 R+ 0:00 ps ax

What if all you wanted to see were those processes ID's that indicated a
bash shell? You could "pipe" the output of ps to the input of grep, specifying
"bash" as the pattern for grep to search. The result would give you only those
lines of the output from ps that contained the pattern "bash".

root@rock:~# ps ax | grep bash
2490 tty1l S 0:00 bash
3287 pts/0 Ss 0:00 -bash

A little later on we will cover using pipes on the command line to help
with analysis.

Stringing multiple powerful commands together is one the most useful
and powerful techniques provided by Linux for forensic analysis. This is one of
the single most important concepts you will want to learn if you decide to take
on Linux as a forensic tool. With a single command line built from multiple

Barry J. Grundy 45

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

commands and pipes, you can use several utilities and programs to boil down
an analysis very quickly.

The Super User

If Linux gives you an error message "Permission denied", then in all
likelihood you need to be "root" to execute the command or edit the file, etc.
You don't have to log out and then log back in as "root" to do this. Just use the
su command to give yourself root powers (assuming you know root’s
password). Enter the password when prompted. You now have root privileges
(the system prompt will reflect this). When you are finished using your su
login, return to your original login by typing exit. Here is a sample su session:

bgrundy@rock:~$ whoami

bgrundy

bgrundy@rock:~$ su -
Password:<enter root password>
root@rock:~# whoami

root

root@rock:~# exit

logout

bgrundy@rock:~$

Note that the "-" after su allows Linux to apply root's environment
(including root’s path) to your su login. So you don't have to enter the full path
of a command. Actually, suis a “switch user” command, and can allow you to
become any user (if you know the password), not just root.

A word of caution: Be VERY judicious in your use of the root login. It
can be destructive. For simple tasks that require root permission, use su and
use it sparingly.

Barry J. Grundy 46

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

V. Editing with Vi

There are a number of terminal mode (non-GUI) editors available in
Linux, including emacs and vi. You could always use one of the available GUI
text editors in Xwindow, but what if you are unable to start X? The benefit of
learning vi or emacs is your ability to use them from an xterm, a character
terminal, or a telnet (use ssh instead!) session, etc. We will discuss vi here. (I
don't do emacs :-)). viin particular is useful, because you will find it on all
versions of Unix. Learn vi and you should be able to edit a file on any Unix
system.

The Joy of Vi

You can start vi either by simply typing vi at the command prompt, or
you can specify the file you want to edit with vi filename. If the file does not
already exist, it will be created for you.

vi consists of two operating modes, command mode and edit mode.
When you first enter vi you will be in command mode. Command mode allows
you to search for text, move around the file, and issue commands for saving,
save-as, and exiting the editor. Edit mode is where you actually input and
change text.

In order to switch to edit mode, type either a (for append), i (for insert),
or one of the other insert options listed on the next page. When you do this
you will see "--Insert--" appear at the bottom of your screen (in most versions).
You can now input text. When you want to exit the edit mode and return to
command mode, hit the escape key.

You can use the arrow keys to move around the file in command mode.
The vi editor was designed, however, to be exceedingly efficient, if not intuitive.
The traditional way of moving around the file is to use the qwerty keys right
under your finger tips. More on this below. In addition, there are a number of
other navigation keys that make moving around in vi easier.

If you lose track of which mode you are in, hit the escape key twice. You
should hear your computer beep and you will know that you are in command
mode.

In current Linux distributions, vi is usually a link to some newer
implementation of vi, such as vim (vi improved), or in the case of Slackware,
elvis. If your distribution includes vim, it should come with a nice online
tutorial. Itis worth your time. Try typing vimtutor at a command prompt.

Barry J. Grundy 47

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Work through the entire thing. This is the single best way to start learning vi.
The navigation keys mentioned above will become clear if you use vimtutor.

Vi command summary

Entering Edit Mode from Command Mode:
a = append text (after the cursor)
i = insert text (directly under the cursor)
o (the letter “oh”) open a new line under the current line
O (capital “oh”) open a new line above the current line

Command (Normal) Mode:

0 (zero) = Move cursor to beginning of current line.
$ = Move cursor to the end of current line.

X = delete the character under the cursor

X = delete the character before the cursor

dd = delete the entire line the cursor is on

W = save and continue editing

‘wq = save and quit (can use ZZ as well)

:q! = quit and discard changes

:w filename = save a copy to filename (“save as”)

The best way to save yourself from a messed up edit is to hit <ESC>
followed by :q! That command will quit without saving changes.

Another useful feature in command mode is the string search. To search
for a particular string in a file, make sure you are in command mode and type

Istring

Where stringis your search target. After issuing the command, you can
move on to the next hit by typing "n".

viis an extremely powerful editor. There are a huge number of
commands and capabilities that are outside the scope of this guide. See man vi
for more details. Keep in mind there are chapters in books devoted to this
editor. There are even a couple of books devoted to vi alone.

Barry J. Grundy 48

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

VI. Mounting File Systems

There is a long list of file system types that can be accessed through
Linux. You do this by using the mount command. Linux has a couple of
special directories used to mount file systems to the existing Linux directory
tree. One directory is called /mnt. Itis here that you can dynamically attach
new file systems from external (or internal) storage devices that were not
mounted at boot time. Typically, the /mni directory is used for temporary
mounting. Another available directory is /media, which provides a standard
place for users and applications to mount removable media. Actually you can
mount file systems anywhere (not just on /mnt or /media), but it's better for
organization. Since we will be dealing with mostly temporary mounting of
various file systems, we will use the /mni directory for most of our work. Here
is a brief overview.

Any time you specify a mount point you must first make sure that that
directory exists. For example to mount a floppy under /mnt/floppy you must be
sure that /mnt/floppy exists. After all, suppose we want to have a CDROM and a
floppy mounted at the same time? They can't both be mounted under /mnt
(you would be trying to access two file systems through one directory!). So we
create directories for each device’s file system under the parent directory /mnt.
You decide what you want to call the directories, but make them easy to
remember. Keep in mind that until you learn to manipulate the file /etc/fstab
(covered later), only root can mount and unmount file systems.

Newer distributions usually create mount points for floppy and cdrom
for you, but you might want to add others for yourself (mount points for
subject disks or images, etc. like /mnt/data or /mnt/analysis):

root@rock:~# mkdir /mnt/analysis

The Mount Command
The "mount” command uses the following syntax:

mount -t <filesystem> -0 <options> <device> <mountpoint>
Example: Reading a DOS / Windows floppy

« Insert the floppy and type:

Barry J. Grundy 49

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# mount -t vfat /dev/fdo0 /mnt/floppy

Now change to the newly mounted file system (this assumes that the
directory /mnt/floppy already exists. If not, create it):

root@rock:~# cd /mnt/floppy

You should now be able to navigate the floppy as usual. When you are
finished, EXIT OUT of the /mnt/floppy directory, and unmount the file
system with:

root@rock:~# umount /mnt/floppy

* Note the proper command is umount, not #urmount. This cleanly
unmounts the file system. DO NOT remove the disk OR SWAP the
disk until it is unmounted.

« Ifyou get an error message that says the file system cannot be
unmounted because it is busy, then you most likely have a file open
from that directory, or are using that directory from another
terminal. Check all your xterms and virtual terminals and make sure
you are no longer in the mounted directory.

Example: Readinga CDROM

« Insert the CDROM and type:

root@rock:~# mount -t is09660 /dev/cdrom /mnt/cdrom

* Now change to the newly mounted file system:

root@rock:~# cd /mnt/cdrom

* You should now be able to navigate the CD as usual.
* When you are finished, EXIT OUT of the /mnt/cdrom directory, and
unmount the file system with:

root@rock:~# umount /mnt/cdrom

Barry J. Grundy 50

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

If you want to see a list of file systems that are currently mounted, just
use the mount command without any arguments or parameters. It will list the
mount point and file system type of each device on system, along with the
mount options used (if any).

root@rock:~# mount

/dev/hda5 on / type ext3 (rw,noatime)

none on /proc type proc (rw)

/dev/hda7 on /mnt/data type vfat (rw)

/dev/fd0 on /mnt/floppy type vfat (ro,noexec,noatime)

The ability to mount and unmount file systems is an important skill in
Linux. There are a large number of options that can be used with mount (some
we will cover later), and a number of ways the mounting can be done easily and
automatically. Refer to the mount info or man pages for more information.

The file system table (/etc/fstab)

It might seem like "mount -t is09660 /dev/cdrom /mnt/cdrom" is a lot
to type every time you want to mount a CD. One way around this is to edit the
file /etc/fstab (“file system table”). This file allows you to provide defaults for
your mountable file systems, thereby shortening the commands required to
mount them. My /etc/fstablooks like this:

root@rock:~# cat /etc/fstab

/dev/sda3 / ext3 noauto,noatime 1 1
/dev/sda2 none swap sw 00
/dev/sdal /boot ext3 defaults 12
/dev/cdrom /mnt/cdrom 1s09660 noauto,users,ro 0 0
/dev/sda4 /mnt/data vfat rw, users 00
none /proc proc defaults 00
/dev/fdo /mnt/floppy vfat noauto, rw,users 0 0

The columns are:
<device> <mount point> <fstype> <default options>

With this /etc/fstab, I can mount a floppy or CD by simply typing:

root@rock:~# mount /mnt/floppy

or

root@rock:~# mount /mnt/cdrom

Barry J. Grundy 51

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The above mount commands look incomplete. When not enough
information is given, the mount command will look to /etc/fstab to fill in the
blanks. Ifit finds the required info, it will go ahead with the mount.

Note the "user" entry in the options column for some devices. This
allows non-root users to mount the devices. Very useful. To find out more
about available options for /etc/fstab, enter info fstab at the command prompt.

Also keep in mind that default Linux installations will often create
/mnt/floppy and /mnt/cdrom for you already. After installing a new Linux
system, have a look at /etc/fstab to see what is available for you. If what you
need isn’t there, add it.

Barry J. Grundy 52

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

VII. Linux and Forensics

Included Forensic Tools

Linux comes with a number of simple utilities that make imaging and
basic analysis of suspect disks and drives comparatively easy. These tools
include:

¢ dd -command used to copy from an input file or device to an output
file or device. Simple bitstream imaging.

» sfdisk and fdisk -used to determine the disk structure.

» grep -search files (or multiple files) for instances of an expression or
pattern.

« Theloop device -allows you to associate regular files with device
nodes. This will then allow you to mount a bitstream image without
having to rewrite the image to a disk.

« md5sum and shalsum -create and store an MD5 or SHA hash of a
file or list of files (including devices).

» file -reads afile’s header information in an attempt to ascertain its
type, regardless of name or extension.

* xxd - command line hexdump tool. For viewing a file in hex mode.

Following is a very simple series of steps to allow you to perform an easy
practice analysis using the simple Linux tools mentioned above. All of the
commands can be further explored with “man command’. For simplicity we
are going to use a floppy with a FAT file system. Again, this is just an
introduction to the basic commands. These steps can be far more powerful
with some command line tweaking.

Barry J. Grundy 53

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Analysis organization

Having already said that this is just an introduction, most of the work
you will do here can be applied to actual casework. The tools are standard
Linux tools, and although the example shown here is very simple, it can be
extended with some practice and a little (ok, a lot) of reading. The practice
floppy (in raw image format from a simple dd) for the following exercise is
available at:

http://www.LinuxLEO.com/Files/practical.floppy.dd

Of course, as has been pointed out to me on numerous occasions in the
last few years, floppy disks are largely a thing of the past. They are nice in that
they have a standard size, make for a small and very manageable image for
introductory practice, and provide a consistent physical interface (when they
are present). Future versions of this document will likely do away with the
floppy image altogether, in favor of more modern media (even for the basic
exercise). But for the mean time, just bear with me and follow along. You don't
need a floppy drive to download and analyze the image...if you don't have one,
you'll just have to do without writing the image to a physical disk. At this point,
understanding the concepts is good enough.

Once you download the floppy image, put a blank floppy disk in your
drive and create the practice floppy with the following command (covered in
detail later):

root@rock:~# dd if=practical.floppy.dd of=/dev/fdo

The output of various commands and the amount of searching we will
do here is limited by the scope of this example and the amount of data on a
floppy. When you actually do an analysis on larger media, you will want to
have it organized. Note that when you issue a command that results in an
output file, that file will end up in your current directory, unless you specify a
path for it.

One way of organizing your data would be to create a directory in your
“home” directory for evidence and then a subdirectory for different cases.
Since we will be executing these commands as root, the home directory is /root:

root@rock:~# mkdir ~/evid

Barry J. Grundy 54

http://www.LinuxLEO.com/Files/practical.floppy.dd

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The tilde (~) in front of the directory name is shorthand for “home
directory”, so when I type ~/evid, it is interpreted as $HOME/evid. 1f I am
logged in as root, the directory will be created as /root/evid. Note that if you are
already in your home directory, then you don't need to type ~/. Simply using
mkdir evid will work just fine. We are being explicit for instructional purposes.

Directing all of our analysis output to this directory will keep our output
files separated from everything else and maintain case organization. You may
wish to have a separate drive mounted as /mnt/evid.

For the purposes of this exercise, we will be logged in as root. 1 have
mentioned already that this is generally a bad idea, and that you can make a
mess of your system if you are not careful. Many of the commands we are
utilizing here require root access (permissions on devices that you might want
to access should not be changed to allow otherwise, and doing so would be far
more complex than you think). So the output files that we create and the
images we make will be found under /root/evid].

An additional step you might want to take is to create a special mount
point for all subject file system analysis . This is another way of separating
common system use with evidence processing.

root@rock:~# mkdir /mnt/analysis

Determining the structure of the disk

There are two simple tools available for determining the structure of a
disk attached to your system. The first, fdisk, we discussed earlier using the -1
option. Replace the “x” with the letter of the drive that corresponds to the
subject drive. For example, if our subject disk is attached on the secondary IDE
channel as the master disk, it will be seen as /dev/hdc. A Serial ATA (SATA) disk
will be /dev/sda (or sdb, etc.) We can get the partition information on that disk

with:

root@rock:~# fdisk -1 /dev/hdc

Disk /dev/hdc: 60.0 GB, 60011642880 bytes
255 heads, 63 sectors/track, 7296 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdc1 * 1 654 5253223+ 7 HPFS/NTFS
/dev/hdc2 655 2478 14651280 7 HPFS/NTFS
/dev/hdc3 2479 7296 38700585 5 Extended
/dev/hdc5 2479 4303 14659281 83 Linux
/dev/hdc6 4304 4366 506016 82 Linux swap

Barry J. Grundy 55

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

We can redirect the output of this command to a file for later use by
issuing the command as:

root@rock:~# fdisk -1 /dev/hdc > ~/evid/fdisk.disk1

A couple of things to note here: The name of the output file (fdisk.diskI)
is completely arbitrary. There are no rules for extensions. Name the file
anything you want. I would suggest you stick to a convention and make it
descriptive. Also note that since we identified an explicit path for the file name,
therefore fdisk.disk1 will be created in /root/evid. Had we not given the path,
the file would be created in the current directory (/root).

Also note that you can expect to see strange output if you use fdisk on a
floppy disk. The fdisk command works by examining the partition table in the
first sector (0) of a device. If there is no partition table there, such as on devices
that house a single volume, it will still attempt to interpret the data and output
garbage. Be aware of that if you attempt fdisk on the practice floppy (and some
USB thumb drives). Try it on your hard drive instead to see sample output.
Don’t use fdisk on the practice floppy. The output will just confuse you.

Creating a forensic image of the suspect disk

Make an image of the practice disk using basic dd. This is your standard
forensic image of a suspect disk. Change to and execute the command from
within the /root/evid/ directory:

root@rock:~# cd evid
root@rock:~/evid # dd if=/dev/fd0 of=image.diskl bs=512

This takes your floppy device (/dev/fd0) as the input file (if) and writes
the output file (of) called image.disk1 in the current directory (/root/evid/). The
bs option specifies the block size. This is really not needed for most block
devices (hard drives, etc.) as the Linux kernel handles the actual block size. It’s
added here for illustration, as it can be a useful option in many situations
(discussed later).

For the sake of safety and practice, change the read-write permissions of
your image to read-only (for what it's worth, I don't normally do this).

root@rock:~/evid # chmod 444 image.disk1

Barry J. Grundy 56

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The 444 gives all users read-only access. If you are real picky, you could
use 400. Note that the owner of the file is the user that created it.

Now that you have created an image file, you can restore the image to
another disk if you are interested in a “clone” of the original disk. Put another
(blank) floppy in and type:

root@rock:~/evid # dd if=image.diskl of=/dev/fd0 bs=512

This is the same as the first dd command, only in reverse. Now you are
taking your image (the input file “if’) and writing it to another disk (the output
file “of”) to be used as a backup or as a working copy for the actual analysis.

Note that using dd creates an exact duplicate of the physical device file.
This includes all the file slack and unallocated space. We are not simply
copying the logical file structure. Unlike many forensic imaging tools, dd does
not fill the image with any proprietary data or information. It is a simple bit
stream copy from start to end. This (in my ever-so-humble opinion) has a
number of advantages, as we will see later.

Mounting a restored image

Mount the restored (cloned) working copy and view the contents.
Remember, we are assuming this is a DOS formatted disk from a Win 98/95
machine.

root@rock:~/evid # mount -t vfat -o ro,noexec /dev/fd® /mnt/analysis

This will mount your working copy (the new floppy you created from the
forensic image) on “/mnt/analysis”’. The “~o ro,noexec” specifies the options
ro (read-only) and noexec (prevents the execution of binaries from the mount
point) in order to protect the disk from you, and your system (and mount
point) from the contents of the disk. There are other useful mount options as
well, such as noatime. See man mount for more details.

Now cd to the mount point (/mnt/analysis) and browse the contents.
Having mounted the physical clone of our original, we are simply looking at the
logical file system.

Be sure to unmount the disk when you finish.

root@rock:~/evid # umount /mnt/analysis

Barry J. Grundy 57

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Mounting the image using the loopback device

Another way to view the contents of the image without having to restore
it to another disk is to mount using the loop interface. Basically, this allows you
to “mount” a file system within an image file (instead of a disk) to a mount
point and browse the contents. Your Linux kernel must have loop either
compiled as a module or compiled into the kernel for this to work. By default,
Slackware 12 has the loop driver compiled into the kernel.

We use the same mount command and the same options, but this time
we include the option “loop” to indicate that we want to use the loop device to
mount the file system within the image file, and we specify a disk (partition)
image rather than a disk device. Change to the directory where you created the
image and type:

root@rock:~/evid # mount -t vfat -o ro,noexec,loop image.diskl /mnt/analysis

Now you can change to /mnt/analysis and browse the image as if it were
a mounted disk! Use the mount command by itself to double check the
mounted options.

When you are finished browsing, unmount the image file.

root@rock:~/evid # umount /mnt/analysis

File Hash

One important step in any analysis is verifying the integrity of your data
both before after the analysis is complete. You can get a hash (CRC, MD5, or
SHA) of each file in a number of different ways. In this example, we will use the
SHA hash. SHA is a hash signature generator that supplies a 160-bit
“fingerprint” of a file or disk. Itis not feasible for someone to computationally
recreate a file based on the SHA hash. This means that matching SHA
signatures mean identical files.

We can get an SHA sum of a disk by changing to our evidence directory
(i.e. /root/evid) and running the following command (note that the following
commands can be replaced with md5sum if you prefer to use the MD5 hash
algorithm):

root@rock:~/evid # shalsum /dev/fdo

Barry J. Grundy 58

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

or

root@rock:~/evid # shalsum /dev/fd0@ > sha.diskl

The redirection in the second command allows us to store the signature
in a file and use it for verification later on. To get a hash of a raw disk (/dev/hda,
/dev/fdo, etc.) the disk does NOT have to be mounted. We are hashing the
device (the disk) not the file system. As we discussed earlier, Linux treats all
objects, including physical disks, as files. So whether you are hashing a file or a
hard drive, the command is the same.

We can get a hash of each file on the disk using the find command and
an option that allows us to execute a command on each file found. We can get
a very useful list of SHA hashes for every file on a disk by loop mounting the
image again, and then changing to the /mnt/analysis directory:

root@rock:~# mount -t vfat -o ro,noexec,loop image.diskl /mnt/analysis
root@rock:~# cd /mnt/analysis
root@rock:/mnt/analysis #

Once we are in the /mnt/analysis directory (as reflected by our prompt),
we can now run a command that will find all the regular files on the file system
at that mount point and run a hash on all those files:

root@rock:/mnt/analysis # find . -type f -exec shalsum {} \; > ~/evid/sha.filelist

This command says “find, starting in the current directory (signified by
the “.”), any regular file (-type f) and execute (-exec) the command shalsum on
all files found ({}). Redirect the output to sha.filelist in the ~/evid directory
(where we are storing all of our evidence files). Remember, the tilde (~) in front
of the directory name is shorthand for “home”, so ~/evid is equivalent to
/root/evid. The “\;” is an escape sequence that ends the —exec command. The
result is a list of files from our analysis mount point and their SHA hashes.
Again, you can substitute the md5sum command if you prefer.

Have a look at the hashes by using the cat command to stream the file to
standard output (in this case, our terminal screen):

Barry J. Grundy 59

mailto:root@timmy

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:/mnt/analysis # cat /root/evid/sha.filelist

86082e288fead4a0f5c5ed3c7c40b3e7947afecll
81e62f9f73633e85b91e7064655b0ed190228108
0950fb83dd03714d0c15622fadc5efe719869e48
7a1d5170911a87a74ffff8569f85861bc2d2462d
63ddc7bca46f08caa51e1d64a12885e1b4c33cc9
8844614b5c2f90fdodf6f8c8766109573ae1b923
4cf18c44023c05faddde98ed6b669dc4645F130b

./Docs/Benchmarks.xls
./Docs/Computer_Build.xml
./Docs/Law.doc
./Docs/whyhack
./P1cs/C800x600.jpg
./Pics/bike2.jpg
./Pics/bike3. jpg

<continues>

You can also use Linux to do your verification for you. To verify that
nothing has been changed on the original floppy, you can use the -c option
with shalsum. If the disk was not altered, the command will return “ok”.
Make sure the floppy is in the drive and type:

root@rock:/mnt/analysis # shalsum -c /root/evid/sha.diskl

If the SHA hashes match from the floppy and the original SHA output
file, then the command will return “OK” for /dev/fd0. Remember that sha.disk1
contains the hash for the physical disk. The same can be done with the list of
file SHAs. Make sure the floppy file system is still mounted on /mnt/analysis,
change to that directory and issue the command:

root@rock:/mnt/analysis # shalsum -c /root/evid/sha.filelist
./Docs/Benchmarks.xls: OK
./Docs/Computer_Build.xml: OK
./Docs/Law.doc: OK
./Docs/whyhack: OK
./Pics/C800x600.jpg: OK
./Pics/bike2.jpg: OK
./Pics/bike3.jpg: OK
./Pics/matrixs3.jpg: OK
./Pics/mulewheelie.gif: OK
./Pics/Stoppie.gif: OK
./arp.exe: OK

./ftp.exe: OK
./loveletter.virus: OK
./ouchy.dat: OK

./snoof.gz: OK

Again, the SHA hashes in the file will be compared with SHA sums taken
from the floppy (at the mount point). If anything has changed, the program
will give a “failed” message. Unchanged files will be marked “OK”. This is the
fastest way to verify the hashes. Note that the filenames start with “./”. This
indicates a relative path. Meaning that we must be in the same relative
directory when we check the hashes, since that's where the command will look
for the files.

Barry J. Grundy 60

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The Analysis

You can now view the contents of the read-only mounted or restored
disk or loop-mounted image. If you are running the X window system, then
you can use your favorite file browser to look through the disk. In most (if not
all) cases, you will find the command line more useful and powerful in order to
allow file redirection and permanent record of your analysis. We will use the
command line here.

We are also assuming that you are issuing the following commands from
the proper mount point (/mnt/analysis/). If you want to save a copy of each
command’s output, be sure to direct the output file to your evidence directory
(/rootlevid/) using an explicit path.

Navigate through the directories and see what you can find. Use thels
command to view the contents of the disk. Again, you should be in the
directory /mnt/analysis, our working directory. The command in the following
form might be useful:

root@rock:/mnt/analysis # 1s -al

total 118

drwxr--r-- 4 root root 7168 Dec 31 1969
drwxr-xr-x 13 root root 4096 Dec 21 14:20 ..
drwxr--r-- 3 root root 512 Sep 23 2000 Docs
drwxr--r-- 2 root root 512 Sep 23 2000 Pics
-rWXr--r-- 1 root root 19536 Aug 24 1996 arp.exe
-rwWXr--r-- 1 root root 37520 Aug 24 1996 ftp.exe
-r-Xr--r-- 1 root root 16161 Sep 21 2000 loveletter.virus
-FWXr--r-- 1 root root 21271 Mar 19 2000 ouchy.dat
-rwWXr--r-- 1 root root 12384 Aug 2 2000 snoof.gz

This will show all the hidden files (-a), give the list in long format to
identify permission, date, etc. (-1). You can also use the -R option to list
recursively through directories. You might want to pipe that through less.

root@rock: analysis # 1s -alR | less

total 118

drwxr--r-- 4 root root 7168 Dec 31 1969
drwxr-xr-x 13 root root 4096 Dec 21 14:20
drwxr--r-- 3 root root 512 Sep 23 2000 Docs
drwxr--r-- 2 root root 512 Sep 23 2000 Pics
./Docs:

total 64

drwxr--r-- 3 root root 512 Sep 23 2000

drwxr--r-- 4 root root 7168 Dec 31 1969

-rwxr--r-- 1 root root 17920 Sep 21 2000 Benchmarks.xls
<continues>

Barry J. Grundy 61

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Note that we are looking at files on a FAT32 partition using Linux tools.
Things like permissions can be a little misleading because of translations that
may take place, depending on the file system, and omitted information. This is
where some of our more advanced forensic tools come in later.

Use the space bar to scroll through the recursive list of files. Remember
that the letter “q” will quit a paging session.

Making a List of All Files

Get creative. Take the above command and redirect the output to your
evidence directory. With that you will have a list of all the files and their
owners and permissions on the subject file system. This is a very important
command. Check the man page for various uses and options. For example,
you could use the —i option to include the inode (file “serial number”) in the
list, the —u option can be used so that the output will include and sort by access
time (when used with the —t option).

root@rock:/mnt/analysis # 1s -laiRtu > ~/evid/access_file.list

You could also get a list of the files, one per line, using the find
command and redirecting the output to another list file:

root@rock:/mnt/analysis # find . -type f > ~/evid/file.list.2

There is also the tree command, which prints a recursive listing that is
more visual...It indents the entries by directory depth and colorizes the
filenames (if the terminal is correctly set).

Barry J. Grundy 62

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:/mnt/analysis # tree
-- Docs

| -- Benchmarks.xls

| -- Computer_Build.xml

| -- Law.doc

| -- Private

*-- whyhack
P
I
I
I
I
|

-- Pics
-- C800x600.jpg
-- Stoppie.gif
-- bike2.jpg
-- bike3.jpg
-- matrixs3.jpg
-- mulewheelie.gif
-- arp.exe
-- ftp.exe
-- loveletter.virus
-- ouchy.dat
-- shoof.gz
3 directories, 15 files

Have a look at the above commands, and compare their output. Which
do you like better? Remember the syntax assumes you are issuing the
command from the /mnt/analysis directory (use pwd if you don’t know where
you are).

Now use the grep command on either of lists created by the first two
commands above for whatever strings or extensions you want to look for.

root@rock:/mnt/analysis # grep -i jpg ~/evid/file.list.2

This command looks for the pattern “jpg” in the list of files, using the
filename extension to alert us to a JPEG file. The -i makes the grep command
case insensitive. Once you get a better handle on grep, you can make your
searches far more targeted. For example, specifying strings at the beginning or
end of a line (like file extensions) using “A” or “$”. The grep man page has a
whole section on these “regular expression” terms.

Making a List of File Types

What if you are looking for JPEG’s but the name of the file has been
changed, or the extension is wrong? You can also run the command file on
each file and see what it might contain.

file filename

Barry J. Grundy 63

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The file command compares each file’s header (the first few bytes of a
raw file) with the contents of the “magic” file (can be found in /usr/share/magic,
or /etc/file/magic, depending on the distribution). It then outputs a description
of the file.

If there are a large number of files without extensions, or where the
extensions have changed, you might want to run the file command on all the
files on a disk (or in a directory, etc.). Remember our use of the find
command’s -exec option with shalsum? Let’s do the same thing with file:

root@rock:/mnt/analysis # find . -type f -exec file {} \; > ~/evid/filetype.list

View the resulting list with the cat command (or less), and if you are
looking for images in particular, then use grep to specify that:

root@rock:/mnt/analysis # cat ~/evid/filetype.list
./Docs/Benchmarks.x1ls: Microsoft Installer
./Docs/Computer_Build.xml: gzip compressed data, from Unix
./Docs/Law.doc: Microsoft Installer

./Docs/whyhack: ASCII English text, with very long lines
./Pics/C800x600.jpg: JPEG image data, JFIF standard 1.02
./Pics/bike2.jpg: PC bitmap data, Windows 3.x format, 300 x 204 x 24
./Pics/bike3.jpg: PC bitmap data, Windows 3.x format, 317 x 197 x 24
./Pics/matrixs3.jpg: JPEG image data, JFIF standard 1.01
./Pics/mulewheelie.gif: PC bitmap data, Windows 3.x format, 425x328x24
./Pics/Stoppie.gif: GIF image data, version 87a, 1024 x 693
./arp.exe: MS-DOS exe PE for MS Windows (console) Intel 80386 32-bit
./ftp.exe: MS-DOS exe PE for MS Windows (console) Intel 80386 32-bit
./loveletter.virus: ASCII English text

./ouchy.dat: JPEG image data, JFIF standard 1.02

./snoof.gz: gzip compressed data, from Unix

The following command would look for the string “image” using the
grep command on the file /root/evid/filetype.list

root@rock:/mnt/analysis # grep image ~/evid/filetype.list
./Pics/C800x600.jpg: JPEG image data, JFIF standard 1.02
./Pics/matrixs3.jpg: JPEG image data, JFIF standard 1.01
./Pics/Stoppie.gif: GIF image data, version 87a, 1024 x 693
./ouchy.dat: JPEG image data, JFIF standard 1.02

Note that the file ouchy.dat does not have the proper extension, but it is
still identified as a JPEG image. Also note that some of the images above do not
show up in our grep list because their descriptions do not contain the word
“image”. There are two Windows Bitmap images that have .jpg extensions that
do not end up in the grep list. We can fix this by either creating our own

Barry J. Grundy 64

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

“images” magic file or by “tagging” the original file. We “tag” the original
magic file by editing it to contain our own identifiers that we can then use grep
to locate.

Viewing Files
For text files and data files, you might want to use cat, more or less to
view the contents.

cat filename
more filename
less filename

Be aware that if the output is not standard text, then you might corrupt
the terminal output (type reset or stty sane at the prompt and it should clear
up). Itis best to run these commands in a terminal window in X so that you
can simply close out a corrupted terminal and start another. Using the file
command will give you a good idea of which files will be viewable and what
program might best be used to view the contents of a file. For example,
Microsoft Office documents can be opened under Linux using programs like
OpenOffice.

Perhaps a better alternative for viewing unknown files would be to use
the strings command. This command can be used to parse regular ASCII text
out of any file. It’s good for formatted documents, data files (Excel, etc.) and
even binaries (e.g. unidentified executables), which might have interesting text
strings hidden in them. It might be best to pipe the output through less.

strings filename | less

Have a look at the contents of the practice disk on /mnt/analysis. There
is a file called arp.exe. What does this file do? We can’t execute it, and from
using the file command we know that it’s an DOS/Windows executable. Run
the following command (again, assuming you are in the /mnt/analysis
directory) and scroll through the output. Do you find anything of interest
(hint: like a usage message)?

Barry J. Grundy 65

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:/mnt/analysis # strings arp.exe | less
11}

<-t8</t4

t]Ph

t2Ph '

Ph!'

@svw

WROU

wMoU

wHOU

SVWj

...<continues>

inetmib1.d11

Displays and modifies the IP-to-Physical address translation tables
used by

address resolution protocol (ARP).

ARP -s inet_addr eth_addr [if_addr]

ARP -d inet_addr [if_addr]

ARP -a [inet_addr] [-N if_addr]

-a Displays current ARP entries by interrogating the current
protocol data. If inet_addr is specified, the IP and Physical
addresses for only the specified computer are displayed. If
more than one network interface uses ARP, entries for each ARP
table are displayed.

-g Same as -a.

<continues>

If you are currently running the X window system, you can use any of
the graphics tools that come standard with whichever Linux distribution you
are using. gqview is one graphics tool for the GNOME desktop that will display
graphic files in a directory. Experiment a little. Other tools, such as gthumb for
Gnome and Konqueror from the KDE desktop have a feature that will create a
very nice html image gallery for you from all images in a directory.

Once you are finished exploring, be sure to unmount the floppy (or loop
mounted disk image). Again, make sure you are not anywhere in the mount
point when you try to unmount, or you will get the “busy” error. The
commands will take you back to your home directory (using the tilde ~) and
then unmount the loop mounted file system.

root@rock:/mnt/analysis # cd ~
root@rock:~# umount /mnt/analysis

Searching Unallocated and Slack Space for Text

Now let’s go back to the original image. The restored disk (or loop
mounted disk image) allowed you to check all the files and directories (logical
view). What about unallocated and slack space (physical view)? We will now

Barry J. Grundy 66

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

analyze the image itself, since it was a bit for bit copy and includes data in the
unallocated areas of the disk.

Let’s assume that we have seized this disk from a former employee of a
large corporation. The would-be cracker sent a letter to the corporation
threatening to unleash a virus in their network. The suspect denies sending the
letter. This is a simple matter of finding the text from a deleted file (unallocated
space).

First, change back to the directory in which you created the image,
whether it was the root’s home directory, or a special one you created.

root@rock:~# cd /root/evid
root@rock:~/evid #

Now we will use the grep command to search the image for any instance
of an expression or pattern. We will use a number of options to make the
output of grep more useful. The syntax of grep is normally:

grep —options <pattern> <file-to-search>

The first thing we will do is create a list of keywords to search for. It’s
rare we ever want to search evidence for a single keyword, after all. For our
example, lets use “ransom”, “$50,000” (the ransom amount), and “unleash a
virus”. These are some keywords and a phrase that we have decided to use
from the original letter received by the corporation. Make the list of keywords
(using vi) and save it as /root/evid/searchlist.txt. Ensure that each string you
want to search for is on a different line.

$50,000
ransom
unleash a virus

Make sure there are NO BLANK LINES IN THE LIST OR AT THE END OF
THE LIST!! Now we run the grep command on our image:

root@rock:~/evid # grep -abif searchlist.txt image.diskl > hits.txt

We are asking grep to use the list we created in “searchlist.txt” for the
patterns we are looking for. This is specified with the “-f file” option. We are
telling grep to search image.diskl for these patterns, and redirect the output to
a file called hits.txt, so we can record the output. The —a option tells grep to
process the file as if it were text, even if it’s binary. The option -i tells grep to

Barry J. Grundy 67

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

ignore upper and lower case. And the -b option tells grep to give us the byte
offset of each hit so we can find the line in xxd. Earlier we mentioned the grep
man page and the section it has on regular expressions. Please take the time to
read through it and experiment.

Once you run the command above, you should have a new file in your
current directory called hits.txt. View this file with less or more or any text
viewer. Keep in mind that strings might be best for the job. Again, if you use
more or less, you run the risk of corrupting your terminal if there are non-
ASCII characters. We will simply use cat to stream the entire contents of the
file to the standard output. The file hits.txt should give you a list of lines that
contain the words in your searchlist.txtfile. In front of each line is a number
that represents the byte offset for that “hit” in the image file. For illustration
purposes, the search terms are underlined, and the byte offsets are bold in the
output below:

root@rock:~/evid # cat hits.txt

75441:you and your entire business ransom.

75500:1 have had enough of your mindless corporate piracy and will no
longer stand for it. You will receive another letter next week. It
will have a single bank account number and bank name. I want you to
deposit $50,000 in the account the day you receive the letter.
75767:Don't try anything, and don't contact the cops. If you do, I
will unleash a virus that will bring down your whole network and
destroy your consumer's confidence.

In keeping with our command line philosophy, we will use xxd to
display the data found at each byte offset. xxd is a command line hex dump
tool, useful for examining files. Do this for each offset in the list of hits. This
should yield some interesting results if you scroll above and below the offsets.

root@rock:~/evid # xxd -s 75441 image.diskl | less

00126b1: 796f 7520 616e 6420 796f 7572 2065 6e74 you and your ent
00126c1: 6972 6520 6275 7369 6e65 7373 2072 616e ire business ran
00126d1: 736f 6d2e OQa®a 5468 6973 2069 7320 6e6f som...This is no
00126el: 7420 6120 6a6f 6b65 2e0a 0ad49 2068 6176 t a joke...I hav
00126f1: 6520 6861 6420 656e 675 6768 206f 6620 e had enough of
0012701: 796f 7572 206d 696e 646C 6573 7320 636f your mindless co
0012711: 7270 6f72 6174 6520 7069 7261 6379 2061 rporate piracy a
0012721: 6e64 2077 696Cc 6¢c20 6e6f 206c 6f6e 6765 nd will no longe
0012731: 7220 7374 616e 6420 666T 7220 6974 2e20 r stand for it.
<continues>

Please note that the use of grep in this manner is fairly limited. There
are character sets that the common versions of grep do not support. So doing a
physical search for a string on an image file is really only useful for what it does

Barry J. Grundy 68

The Law Enforcement and Forensic Examiner's Introduction to Linux

v.3.78

show you. In other words, negative results for a grep search of an image can be
misleading. The strings or keywords may exist in the image in a form not
recognizable to grep or strings. There are tools that address this, and we will

discuss some of them later.

Barry J. Grundy

69

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

VIII. Common Forensic Issues

Handling Large Disks

The example used in this text utilizes a file system on a floppy disk.
What happens when you are dealing with larger hard disks? When you create
an image of a disk drive with the dd command there are a number of
components to the image. These components can include a boot sector,
partition table, and the various partitions (if defined).

When you attempt to mount a larger image with the loop device, you
find that the mount command is unable to find the file system on the disk.
This is because mount does not know how to “recognize” the partition table.
Remember, the mount command handles file systems, not disks (or disk
images). The easy way around this (although it is not very efficient for large
disks) would be to create separate images for each disk partition that you want
to analyze. For a simple hard drive with a single large partition, you could
create two images.

Assuming your suspect disk is attached as the master device on the
secondary IDE channel:

root@rock:~# dd if=/dev/hdc of=image.disk.dd

...gets the entire disk.

root@rock:~# dd if=/dev/hdc1l of=image.parti.dd

...gets the first partition.

The first command gets you a full image of the entire disk (hdc) for
backup purposes, including the boot record and partition table. The second
command gets you the partition (hdcl). The resulting image from the second
command can be mounted via the loop device.

Note that although both of the above images will contain the same file
system with the same data, the hashes will obviously not match. Making
separate images for each partition, however, is very inefficient.

One method for handling larger disks when using the loop device is to
send the mount command a message to skip trying to mount the first 63
sectors of the image. These sectors are used to contain information (like the
MBR) that is not part of a normal data partition. We know that each sector is

Barry J. Grundy 70

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

512 bytes, and that there are 63 of them. This gives us an offset of 32256 bytes
from the start of our image to the first partition we want to mount. This is then
passed to the mount command as an option, which essentially triggers the use
of an available loop device to mount the specified file system:

root@rock:~# mount -t fstype -o loop,offset=32256 image.disk.dd /mnt/analysis

This effectively “jumps over” the first 63 sectors of the image and goes
straight to the “boot sector” of the first partition, allowing the mount
command to work properly. We will see other examples of this, and how to
find the actual offset later in this document. It may not always be 63 sectors.

Now that we know about the issues surrounding the creation of large
images from whole disks, what do we do if we run into an error? Suppose you
are creating a disk image with dd and the command exits halfway through the
process with a read error? We can instruct dd to attempt to read past the errors
using the conv=noerror option. In basic terms, this is telling the dd command
to ignore the errors that it finds, and attempt to read past them. When we
specify the noerror option it is a good idea to include the sync option along
with it. This will “pad” the dd output wherever errors are found and ensure
that the output will be “synchronized” with the original disk. This may allow
file system access and file recovery where errors are not fatal. Assuming that
our subject drive is /dev/hdc, the command will look something like:

root@rock:~# dd if=/dev/hdc of=image.disk.dd conv=noerror, sync

I would like to caution forensic examiners against using the
conv=noerror, sync option, however. While dd is capable of reading past
errors in many cases, it is not designed to actually recover any data from those
areas. There are a number of tools out there that are designed specifically for
this purpose. My current philosophy is that if you need to use
conv=noerror,sync, then you are using the wrong tool. That is not to say it will
not work as advertised (with some caveats), only that there are better options,
or at least important considerations. We will discuss better options for error
prone disks later in this document.

In addition to the structure of the images and the issues of image sizes,
we also have to be concerned with memory usage and our tools. You might
find that grep, when used as illustrated in our floppy analysis example, might
not work as expected with larger images and could exit with an error similar to:

grep: memory exhausted

Barry J. Grundy 71

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The most apparent cause for this is that grep does its searches line by
line. When you are “grepping” a large disk image, you might find that you have
a huge number of bytes to read through before grep comes across a newline
character. What if grep had to read 200MB of data before coming across a
newline? It would “exhaust” itself (the input buffer fills up).

What if we could force-feed grep some newlines? In our example
analysis we are “grepping” for text. We are not concerned with non-text
characters at all. If we could take the input stream to grep and change the non-
text characters to newlines, grep would have no problem. Note that changing
the input stream to grep does not change the image itself. Also, remember that
we are still looking for a byte offset. Luckily, the character sizes remain the
same, and so the offset does not change as we feed newlines into the stream
(simply replacing one “character” with another).

Let’s say we want to take all of the control characters streaming into
grep from the disk image and change them to newlines. We can use the
translate command, tr, to accomplish this. Check out man tr for more
information about this powerful command:

root@rock:~/evid # tr '[:cntrl:]' '\n' < image.disk | grep -abif list.txt > hits.txt

This command would read: “Translate all the characters contained in
the set of control characters ([:cntrl:]) to newlines (\n). Take the input to tr from
image.disk and pipe the output to grep, sending the results to hits.txt. This
effectively changes the stream before it gets to grep.

This is only one of many possible problems you could come across. My
point here is that when issues such as these arise, you need to be familiar
enough with the tools Linux provides to be able to understand why such errors
might have been produced, and how you can get around them. Remember, the
shell tools and the GNU software that accompany a Linux distribution are
extremely powerful, and are capable of tackling nearly any task. Where the
standard shell fails, you might look at perl or python as options. These subjects
are outside of the scope of the current presentation, but are introduced as
fodder for further experimentation.

Preparing a Disk for the Suspect Image

One common practice in forensic disk analysis is to “wipe” a disk prior
to restoring a forensic image to it. This ensures that any data found on the
restored disk is from the image and not from “residual” data. That is, data left
behind from a previous case or image.

Barry J. Grundy 72

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

We can use a special device as a source of zeros. This can be used to
create empty files and wipe portions of disks. You can write zeros to an entire
disk (or at least to those areas accessible to the kernel and user space) using the
following command (assuming /dev/hdc is the disk you want to wipe):

root@rock:~# dd if=/dev/zero of=/dev/hdc bs=4096

This starts at the beginning of the drive and writes zeros (the input file)
to every sector on /dev/hdc (the output file) in 4096 byte chunks (bs = “block
size”). Specifying larger block sizes can speed the writing process. Experiment
with different block sizes and see what effect it has on the writing speed (i.e.
32k, 64k, etc.). I've wiped 60GB disks in under an hour on a fast IDE controller
with the proper drive parameters (see the next section for more info).

So how do we verify that our command to write zeros to a whole disk
was a success? You could check random sectors with a hex editor, but that’s
not realistic for a large drive. One of the best methods would be to use the xxd
command (command line hexdump) with the “autoskip” option (works if a
drive is wiped with 0x00). The output of this command on a zero’d drive would
give just three lines. The first line, starting at offset zero with a row of zeros in
the data area, followed by an asterisk (*) to indicate identical lines, and finally
the last line, with the final offset followed by the remaining zeros in the data
area. Here’s and example of the command on a zero’d drive (floppy) and its
output.

root@rock:~# xxd -a /dev/fdo
0000000: OO0 00O O0OOO OO OO OOOO GO0 BB
*

0167ff0: G000 0000 OOOO 0O 0000 OO 0000 OO0

Barry J. Grundy 73

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Obtaining Disk Information

Specific drive parameters can be displayed and set using the hdparm
command (for IDE and SATA disks in recent versions). Check hdparm’s man
page for available options. For instance, setting DMA on a drive can
dramatically speed things up. Note that while hdparm may be able to display
settings on SATA disks, be aware that setting parameters is a different story.
Drives must be capable of a given setting in order to work.

root@rock:~# hdparm /dev/hda

/dev/hda:

multcount = 16 (on)

I0_support = 1 (32-bit)

unmaskirq = 0 (off)

using_dma = 0 (off) <-- DMA is turned off
keepsettings = 0 (off)

readonly = 0 (off)

readahead = 256 (on)

geometry = 65535/16/63, sectors = 60011642880, start = 0

root@rock:~# hdparm -di /dev/hda

/dev/hda:
setting using_dma to 1 (on) <-- We have turned DMA on with
using_dma = 1 (on) the -di1 option

In the above session, the first command displays the current parameters
of the drive /dev/hda and shows that DMA is off. The second command
actually turns DMA on for that particular disk. Pay attention to the
“multicount” and “IO_support” settings as well. Most modern distributions
take care of this for you. Just be aware of the capability. Note that this is an
IDE disk.

To obtain a more complete listing of a drive's information, you can use
the -I switch with hdparm. Here is a sample of hdparm output on a SATA disk.
Note that you are given the disk model, serial number and geometry
information, to include user addressable sectors (output is edited for brevity):

Barry J. Grundy 74

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# hdparm -I /dev/sda

/dev/sda:

ATA device, with non-removable media
Model Number: ST3250823AS
Serial Number: 3ND1M14Q
Firmware Revision: 3.03

Standards:

Used: ATA/ATAPI-6 T13 1410D revision 2
Supported: 7 6 5 4 & some of 7

Configuration:
Logical max current
cylinders 16383 16383
heads 16 16
sectors/track 63 63

CHS current addressable sectors: 16514064

LBA user addressable sectors: 268435455

LBA48 user addressable sectors: 488397168
Capabilities:

Commands/features:
Enabled Supported:
* SMART feature set
* Power Management feature set
* Write cache

Host-initiated interface power management
Phy event counters
Software settings preservation

Checksum: correct

Barry J. Grundy

75

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

IX. Advanced (Beginner) Forensics

The following sections are more advanced and detailed. New tools are
introduced to help round out some of your knowledge and provide a more
solid footing on the capabilities of the Linux command line. The topics are still
at the beginner level, but you should be at least somewhat comfortable with the
command line before tackling the exercises. Although I've included the
commands and much of the output for those who are reading this without the
benefit of a Linux box nearby, it is important that you follow along on your own
system as we go through the practical exercises. Typing at the keyboard and
experimentation is the only way to learn.

The Command Line on Steroids

Let’s dig a little deeper into the command line. Often there are
arguments made about the usefulness of the command line interface (CLI)
versus a GUI tool for analysis. [would argue that in the case of large sets of
regimented data, the CLI can sometimes be faster and more flexible than many
GUI tools available today.

As an example, we will look at a set of log files from a single Unix system.
We are not going to analyze them for any sort of smoking gun. The point here
is to illustrate the ability of commands through the CLI to organize and parse
through data by using pipes to string a series of commands together, obtaining
the desired output. Follow along with the example, and keep in mind that to
get anywhere near proficient with this will require a great deal of reading and
practice. The payoff is enormous.

Create a directory called “logs” and download the file logs.v3.tar.gz into
that directory:

http://www.LinuxLEO.com/Files/logs.v3.tar.gz

A .tar.gzfile is commonly referred to as a “tar archive”. Much like a zip
file in the Windows world. The tar part of the extension indicates that the file
was created using the tar command (see man tar for more info). The gz
extension indicates that the file was compressed (commonly with gzip). When
you first download a tar archive, you should always have a look at the contents
of the archive before decompressing, extracting and haphazardly writing the
contents to your drive. View the contents of the archive with the following
command:

Barry J. Grundy 76

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/logs # tar tzvf logs.v3.tar.gz

-rw-r--r-- root/root 8282 2003-10-29 12:45 messages
“rW------- root/root 8302 2003-10-29 16:17 messages.1l
“rW------- root/root 8293 2003-10-29 16:19 messages.2
-rwW------- root/root 4694 2003-10-29 16:23 messages.3
-rwW------- root/root 1215 2003-10-29 16:23 messages.4

The above tar command will list (t) and decompress (z) with verbose
output (v) the file (f) logs.v3.tar.gz. We will use the tar command extensively
throughout this document.

The archive contains 5 log files from a Unix system. The messages logs
contain entries from a variety of sources, including the kernel and other
applications. The numbered files result from log rotation. As the logs are filled,
they are rotated and eventually deleted. On most Unix systems, the logs are
found in /var/log/ or /var/adm.

untar the file:

root@rock:~/logs # tar xzvf logs.v3.tar.gz
messages
messages.
messages.
messages.
messages.

A WNPRE

This tar command differs little from our first command. Now, instead of
listing the contents with the t option, we are extracting it with the x option. All
the other options remain the same. Remember this for later use.

Let’s have a look at one log entry. We pipe the output of cat to the command
head -n 1 so that we only get the 1* line:

root@rock:~/logs # cat messages | head -n 1
Nov 17 04:02:14 hostnamel23 syslogd 1.4.1: restart.

Each line in the log files begin with a date and time stamp. Next comes
the hostname followed by the name of the application that generated the log
message. Finally, the actual message is printed.

Let’s assume these logs are from a victim system, and we want to analyze
them and parse out the useful information. We are not going to worry about
what we are actually seeing here, our object is to understand how to boil the
information down to something useful.

Barry J. Grundy 77

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

First of all, rather than parsing each file individually, let’s try and analyze
all the logs at one time. They are all in the same format, and essentially they
comprise one large log. We can use the cat command to add all the files
together and send them to standard output. If we work on that data stream,
then we are essentially making one large log out of all five logs. Can you see a
potential problem with this?

root@rock:~/logs # cat messages* | less

Nov 17 04:02:14 hostnamel23 syslogd 1.4.1: restart.

Nov 17 04:05:46 hostnamel23 su(pam_unix)[19307]: session opened for user
news by (uid=0)

Nov 17 04:05:47 hostnamel23 su(pam_unix)[19307]: session closed for user
news

Nov 17 10:57:11 hostnamel23 sshd[32765]: Did not receive identification
string from 2xx.71.188.192

Nov 17 10:57:11 hostnamel23 sshd[32766]: Did not receive identification
string from 2xx.71.188.192

Nov 17 10:57:11 hostnamel23 sshd[32767]: Did not receive identification
string from 2xx.71.188.192

Nov 17 19:26:43 hostnamel23 sshd[2019]: Did not receive identification
string from 200.xx.72.129

Nov 18 04:06:04 hostnamel23 su(pam_unix)[5019]: session opened for user
news by

(uid=0)

Nov 18 04:06:05 hostnamel23 su(pam_unix)[5019]: session closed for user
news

Nov 18 18:55:06 hostnamel23 sshd[11204]: Did not receive identification
string from 6x.x2.248.243

Nov 19 04:05:42 hostnamel23 su(pam_unix)[15422]: session opened for user
news by (uid=0)

<continues>

If you look at the output (scroll using less), you will see that the dates
ascend and then jump to an earlier date and then start to ascend again. This is
because the later log entries are added to the bottom of each file, so as the files
are added together, the dates appear to be out of order. What we really want to
do is stream each file backwards so that they get added together with the most
recent date in each file at the fop instead of at the bottom. In this way, when
the files are added together they are in order. In order to accomplish this, we
use tac (yes, that’s cat backwards).

Barry J. Grundy 78

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/logs # tac messages* | less

Nov 23 18:27:00 hostnamel23

succeeded

Nov 23 18:27:58 hostnamel23 kernel:

hda7 >

Nov 23 18:27:58 hostnamel23 kernel:
Nov 23 18:27:58 hostnamel23 kernel:
Nov 23 18:27:58 hostnamel23 kernel:

Cache, CHS=784/
255/63, UDMA(33)

Nov 23 18:27:58 hostnamel23 kernel:

(mask OXFfffffff)

Nov 23 18:27:58 hostnamel23 kernel:
Nov 23 18:27:58 hostnamel23 kernel:
Nov 23 18:27:58 hostnamel23 kernel:

DVD-ROM drive

Nov 23 18:27:58 hostnamel23 kernel:

drive

Nov 23 18:27:58 hostnamel23 kernel:

settings: hdc:D MA, hdd:pio

Nov 23 18:27:58 hostnamel23 kernel:

settings: hda:D MA, hdb:pio

Nov 23 18:27:58 hostnamel23 kernel:

probe irgs later
<continues>

rc.sysinit: Mounting proc filesystem:

hda: hdal hda2 hda3 hda4 < hda5 hda6
Partition check:
ide-floppy driver 0.99.newide

hda: 12594960 sectors (6449 MB) w/80KiB
blk: queue c035e6a4, I/0 limit 4095Mb
idel at 0x170-0x177,0x376 on irqg 15
ide® at 0x1f0-0x1f7,0x3f6 on irqg 14
hdc: TOSHIBA CD-ROM XM-6202B, ATAPI CD/
hda: QUANTUM FIREBALL SE6.4A, ATA DISK
idel: BM-DMA at 0x14c8-0x14cf, BIOS
ide®: BM-DMA at 0x14c@-0x14c7, BIOS

PIIX4: not 100%% native mode: will

Beautiful. The dates are now in order. We can now work on the stream
of log entries as if they were one large (in order) file.

We will introduce a new command, awk, to help us view specific fields
from the log entries, in this case, the dates. awk is an extremely powerful
command. The version most often found on Linux systems is gawk (GNU
awk). While we are going to use it as a stand-alone command, awk is actually a
programming language on its own, and can be used to write scripts for
organizing data. Our concentration will be centered on awk’s “print” function.
See man awk for more details.

Sets of repetitive data can often be divided into columns or “fields”,
depending on the structure of the file. In this case, the fields in the log files are
separated by simple white space (awk’s default field separator). The date is
comprised of the first two fields (month and day).

Nov 23
Nov 23
Nov 23
Nov 23
Nov 23
<continues>

root@rock:~/logs # tac messages* | awk '{print $1" "$2}' | less

Barry J. Grundy

79

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

This command will stream all the log files (each one from bottom to top)
and send the output to awk which will print the first field, $1 (month), followed
by a space (“ “), followed by the second field, $2 (day). This shows the month
and day for every entry. Suppose I just want to see one of each date when an
entry was made. [don’t need to see repeating dates. I ask to see one of each
unique line of output with uniq:

root@rock:~/logs # tac messages* | awk '{print $1" "$2}' | uniq | less
Feb 23

Nov 22

Nov 21

Nov 20

Nov 19

<continues>

This removes repeated dates, and shows me just those dates with log
activity. If a particular date is of interest, I can grep the logs for that particular
date:

root@rock:~/logs # tac messages* | grep "Nov 4"

Nov 4 17:41:27 hostnamel23 sshd[27630]: Received disconnect from
1xx.183.221.214: 11: Disconnect requested by Windows SSH Client.

Nov 4 17:13:07 hostnamel23 sshd(pam_unix)[27630]: session opened for
user root by (uid=0)

Nov 4 17:13:07 hostnamel23 sshd[27630]: Accepted password for root
from 1xx.183.221.214 port 1762 ssh2

Nov 4 17:08:23 hostnamel23 sshd(pam_unix)[27479]: session closed for
user root

Nov 4 17:07:11 hostnamel23 squid[27608]: Squid Parent: child process
27610 started

<continues>

(note there are 2 spaces between “Nov” and “4”, one space will not work)

Of course, we have to keep in mind that this would give us any lines
where the string “Nov 4” resided, not just in the date field. To be more explicit,
we could say that we only want lines that start with “Nov 4”, using the “A” (in
our case, this gives essentially the same output):

root@rock:~/logs # tac messages* | grep ""Nov 4"

Nov 4 17:41:27 hostnamel23 sshd[27630]: Received disconnect from
1xx.183.221.214: 11: Disconnect requested by Windows SSH Client.

Nov 4 17:13:07 hostnamel23 sshd(pam_unix)[27630]: session opened for
user root by (uid=0)

<continues>

Barry J. Grundy 80

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Also, if we don’t know that there are fwo spaces between “Nov” and “4”,
we can tell grep to look for any number of spaces between the two:

root@rock:~/logs # tac messages* | grep A"Nov[]*4"

Nov 4 17:41:27 hostnamel23 sshd[27630]: Received disconnect from
1xx.183.221.214: 11: Disconnect requested by Windows SSH Client.

Nov 4 17:13:07 hostnamel23 sshd(pam_unix)[27630]: session opened for
user root by (uid=0)

Nov 4 17:13:07 hostnamel23 sshd[27630]: Accepted password for root
from 1xx.183.221.214 port 1762 ssh2

Nov 4 17:08:23 hostnamel23 sshd(pam_unix)[27479]: session closed for
user root

Nov 4 17:07:11 hostnamel23 squid[27608]: Squid Parent: child process
27610 started

<continues>

The above grep expression translates to “Lines starting (») with the
string “Nov” followed by zero or more (*) of the preceding characters
([/space/]) followed by a 4”. Obviously, this is a complex issue. Knowing how
to use regular expression will give you huge flexibility in sorting through and
organizing large sets of data. As mentioned earlier, read the grep man page for
a good primer on regular expressions.

As we look through the log files, we may come across entries that appear
suspect. Perhaps we need to gather all the entries that we see containing the
string “Did not receive identification string from <I/P>” for further analysis.

root@rock:~/logs # tac messages* | grep "identification string" | less
Nov 22 23:48:47 hostnamel23 sshd[19380]: Did not receive
identification string from 19x.xx9.220.35

Nov 22 23:48:47 hostnamel23 sshd[19379]: Did not receive
identification string from 19x.xx9.220.35

Nov 20 14:13:11 hostnamel23 sshd[29854]: Did not receive
identification string from 200.xx.114.131

Nov 18 18:55:06 hostnamel23 sshd[11204]: Did not receive
identification string from 6x.x2.248.243

<continues>

Now we just want the date (fields 1 and 2), the time (field 3) and the re-
mote [P address that generated the log entry. The IP address is the last field.
Rather than count each word in the entry to get to the field number of the IP,
we can simply use the variable “$NF”, which means “number of fields”. Since
the IP is the last field, its field number is equal to the number of fields:

Barry J. Grundy 81

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/logs # tac messages* | grep "identification string" |
awk '{print $1" "$2" "$3" "$NF}' | less

Nov 22 23:48:47 19x.xx9.220.35

Nov 22 23:48:47 19x.xx9.220.35

Nov 20 14:13:11 200.xx.114.131

Nov 18 18:55:06 6Xx.Xx2.248.243

Nov 17 19:26:43 200.xx.72.129

<continues>

Note that when the command is too long for one line, it will
automatically wrap to the next line.

We can add some tabs (“\t”) in place of spaces in our output to make it
more readable:

root@rock:~/logs # tac messages* | grep "identification string" |
awk '{print $1" "$2"\t"$3"\t"$NF}' | less

Nov 22 23:48:47 19X.Xxx9.220.35

Nov 22 23:48:47 19X.Xxx9.220.35

Nov 20 14:13:11 200.xx.114.131

Nov 18 18:55:06 6X.X2.248.243

Nov 17 19:26:43 200.xx.72.129

<continues>

This can all be redirected to an analysis log or text file for easy addition
to areport (note that “> report.txt” creates the report file, “>> report.txt”
appends to it). The following commands are typed on one line each:

root@rock:~/logs # echo "Localhost123: Log entries from /var/log/messages" > report.txt
root@rock:~/logs # echo "\"Did not receive identification string\":" >> report.txt
root@rock:~/logs # tac messages* | grep "identification string" |

awk '{print $1" "$2"\t"$3”\t"$NF}' >> report.txt

We can also get a sorted (sort) list of the unique (-u) IP addresses
involved in the same way:

root@rock:~/logs # echo "Unique IP addresses:" >> report.txt
root@rock:~/logs # tac messages* | grep "identification string" | awk '{print $NF}' |
sort -u >> report.txt

The second command above prints only the last field ($NF) of our grep
output (which is the IP address). The resulting list of IP addresses can also be
fed to a script that does nslookup or whois database queries.

You can view the resulting report (report.txt) using the less command.

Barry J. Grundy 82

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

As with all the exercises in this document, we have just sampled the
abilities of the Linux command line. It all seems somewhat convoluted to the
beginner. After some practice and experience with different sets of data, you
will find that you can glance at a file and say “I want that information”, and be
able to write a quick piped command to get what you want in a readable format
in a matter of seconds. As with all language skills, the Linux command line
“language” is perishable. Keep a good reference handy and remember that you
might have to look up syntax a few times before it becomes second nature.

Barry J. Grundy 83

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Fun with DD

We've already done some simple imaging and wiping using dd, let’s
explore some other uses for this flexible tool. dd is sort of like a little forensic
Swiss army knife (talk about over-used clichés!). It has lots of applications,
limited only by your imagination.

Splitting Files and Images

One function we might find useful would be the ability to split images up
into usable chunks, either for archiving or for use in another program. We will
first discuss using split on its own, then in conjunction with dd for “on the fly”
splitting.

For example, you might have a 10GB image that you want to split into
640MB parts so they can be written to CD-R media. Or, if you use forensic
software in Windows and need files no larger than 2GB (for a FAT32 partition),
you might want to split the image into 2GB pieces. For this we use the split
command.

split normally works on lines of input (i.e. from a text file). But if we use
the -b option, we force split to treat the file as binary input and lines are
ignored. We can specify the size of the files we want along with the prefix we
want for the output files. In newer versions of split we can also use the -d
option to give us numerical numbering (*01, *.02, *.03, etc.) for the output files
as opposed to alphabetical (*.aa, *.ab, *.ac, etc.). The command looks like:

split -d -b XXm <file to be split> <prefix of output files>
where XX is the size of the resulting files. For example, if we have a 6GB

image called image.diskl1.dd, we can split it into 2GB files using the following
command:

root@rock:~# split -d -b 2000m image.diskl.dd image.split.

This would result in 3 files (2GB in size) each named with the prefix
“image.split.” as specified in the command, followed by “01”, “02”, “03”, and so
on (assuming a newer version of split that supports the -d option is used):

Barry J. Grundy 84

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# l1ls image.split.*
image.split.01 image.split.02 image.split.03

The process can be reversed. If we want to reassemble the image from
the split parts (from CD-R, etc.), we can use the cat command and redirect the
output to a new file. Remember cat simply streams the specified files to
standard output. If you redirect this output, the files are assembled into one.

root@rock:~# cat image.split.01 image.split.02 image.split.03 > image.new

Or

root@rock:~# cat image.split.0* > image.new

Another way of accomplishing this would be to split the image as we
create it (i.e. from a dd command). This is essentially the “on the fly” splitting
we mentioned earlier. We do this by piping the output of the dd command
straight to split. Assuming our subject drive is /dev/hdc, we would use the
command:

root@rock:~# dd if=/dev/hdc | split -d -b 2000m - image.split.

In this case, instead of giving the name of the file to be split in the split
command, we give a simple “-“ (after the “2000m”). The single dash is a
descriptor that means “standard input”. In other words, the command is
taking its input from the data pipe provided by the standard output of dd
instead of from a file.

Once we have the image, the same technique using cat will allow us to
reassemble it for hashing or analysis.

For practice, let’s take the practical exercise floppy disk we used earlier
and try this method on that disk, splitting it into 360k pieces. If you don't have
a floppy disk, just use a USB thumb drive and replace /dev/fd0 in the following
command with /dev/sdx (where x is your thumb drive). Obtain a hash first, so
that we can compare the split files and the original and make sure that the
splitting changes nothing:

root@rock:~# shalsum /dev/fdo

f5ee9cf56f23e5f5773e2a4854360404a62015cf /dev/fdo

root@rock:~# dd if=practical.floppy.dd | split -d -b 360k - floppy.split.
2880+0 records in

2880+0 records out

Barry J. Grundy 85

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

- remember, the “records” are 512 byte blocks (times 2880 = 1.44Mb)

root@rock:~# 1ls -1h

total 2.9M

-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.01
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.02
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.03
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.04

root@rock:~# cat floppy.split.0* | shalsum
f5ee9cf56123e5f5773e2a4854360404a62015cf -

“ o«

(The out put of the second command above shows a “-“ in place of the
filename. This represents the fact that the hash was calculated from
“standard input” to shalsum [from the pipe], not a file or device)

root@rock:~# cat floppy.split.0* > new.floppy.image

root@rock:~# 1ls -1h

total 4.3M

-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.o1
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.02
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.03
-rw-r--r-- 1 root root 360K Jan 31 12:56 floppy.split.o04
-rw-r--r-- 1 root root 1.5M Jan 31 13:01 new.floppy.image

root@rock:~# shalsum new.floppy.image
f5ee9cf56123e5f5773e2a4854360404a62015cf new.floppy.image

Above, we reassemble the floppy image using cat, and then see the new
image in a directory listing. We then hash the reassembled image using
shalsum.

Looking at the output of the above commands, we see that all the
shalsum’s match (don't confuse shalsum output with md5sum output). We
find the same hash for the disk, for the split images “cat-ed” together, and for
the newly reassembled image.

Barry J. Grundy 86

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Compression on the Fly with DD

Another useful capability while imaging is compression. Considering
our concern for forensic application here, we will be sure to manage our
compression technique so that we can verify our hashes without having to
decompress and write our images out before checking them.

For this exercise, we'll use the GNU gzip application. gzip is a command
line utility that allows us some fairly granular control over the compression
process.

First, for the sake of familiarity, let's look at the simple use of gzip on a
single file and explore some of the options at our disposal. I have created a
directory called testcomp and I've copied the image file practical.floppy.dd into
that directory to practice on. This gives me an uncluttered place to experiment.
First, let's double check the hash of the floppy image:

root@rock:~/testcomp# 1ls -1h
total 1.5M
-rw-r--r-- 1 root root 1.5M May 22 09:11 practical.floppy.dd

root@rock:~/testcomp# shalsum practical.floppy.dd
f5ee9cf56123e5f5773e2a4854360404a62015cf practical.floppy.dd

Now, in its most simple form, we can call gzip and simply provide the
name of the file we want compressed. This will replace the original file with a
compressed file that has a .gz suffix appended.

root@rock:~/testcomp # gzip practical.floppy.dd

root@rock:~/testcomp # 1s -1lh
total 636K
-rw-r--r-- 1 root root 632K May 22 09:11 practical.floppy.dd.gz

So now we see that we have replaced our original 1.5M file with a 632K
file that has a .gz extension. To decompress the resulting .gz file:

root@rock:~/testcomp # gzip -d practical.floppy.dd.gz

root@rock:~/testcomp # 1ls -1lh

total 1.5M

-rw-r--r-- 1 root root 1.5M May 22 09:11 practical.floppy.dd
root@rock:~/testcomp# shalsum practical.floppy.dd
f5ee9cf56f23e5f5773€2a4854360404a62015cf practical.floppy.dd

Barry J. Grundy 87

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

We've decompressed the file and replaced the .gz file with the original
image. A check of the hash shows that all is in order.

Suppose we would like to compress a file but leave the original intact.
We can use the gzip command with the -c option. This writes to standard
output instead of a replacement file. When using this option we need to
redirect the output to a filename of our choosing so that the compressed file is
not simply streamed to our terminal. Here is a sample session using this
technique:

root@rock:~/testcomp # 1s -1h
total 1.5M
-rw-r--r-- 1 root root 1.5M May 22 09:11 practical.floppy.dd

root@rock:~/testcomp # shalsum practical.floppy.dd
fbee9cf56f23e5f5773e2a4854360404a62015cf practical.floppy.dd

root@rock:~/testcomp # gzip -c practical.floppy.dd > floppy.dd.gz

root@rock:~/testcomp # 1ls -1h

total 2.1M

-rw-r--r-- 1 root root 632K May 22 09:38 floppy.dd.gz
-rw-r--r-- 1 root root 1.5M May 22 09:11 practical.floppy.dd

root@rock:~/testcomp # gzip -cd floppy.dd.gz > floppy.dd
root@rock:~/testcomp # 1s -1h

total 3.5M

-rw-r--r-- 1 root root 1.5M May 22 09:40 floppy.dd
-rw-r--r-- 1 root root 632K May 22 09:38 floppy.dd.gz
-rw-r--r-- 1 root root 1.5M May 22 09:39 practical.floppy.dd

root@rock:~/testcomp # shalsum practical.floppy.dd
f5ee9cf56123e5f5773e2a4854360404a62015cf practical.floppy.dd

In the above output, we see that the first directory listing shows the
single image file. We check the hash and then compress using gzip -¢ which
writes to standard output. We redirect that output to a new file (name of our
choice). The second listing shows that the original file remains, and the
compressed file is created. We then use gzip -cd to decompress the file,
redirecting the output to a new file and this time preserving the compressed
file.

These are very basic options for the use of gzip. The reason we learn the
-c option is to allow us to decompress a file and pipe the output to a hash
algorithm. In a more practical sense, this allows us to create a compressed
image and check the hash of that image without writing the file twice.

Barry J. Grundy 88

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

If we go back to a single image file in our directory, we can see this in
action. Remove all the files we just created (using the rm command) and leave
the single original dd image. Now we will create a single compressed file from
that original image and then check the hash of the compressed file to ensure it's
validity:

root@rock:~/testcomp # 1s -1h
total 1.5M
-rw-r--r-- 1 root root 1.5M May 22 09:11 practical.floppy.dd

root@rock:~/testcomp # shalsum practical.floppy.dd
f5ee9cf56123e5f5773e2a4854360404a62015cf practical.floppy.dd

root@rock:~/testcomp # gzip practical.floppy.dd

root@rock:~/testcomp # 1s -1h
total 636K
-rw-r--r-- 1 root root 632K May 22 09:52 practical floppy.dd.gz

root@rock:~/testcomp # gzip -cd practical.floppy.dd.gz | shalsum
f5ee9cf56123e5f5773€2a4854360404a62015cf -

root@rock:~/testcomp # 1s -1lh
total 636K
-rw-r--r-- 1 root root 632K May 22 09:52 practical floppy.dd.gz

First we see that we have the correct hash. Then we compress the image
with a simple gzip command that replaces the original file. Now, all we want
to do next is check the hash of our compressed image without having to write
out a new image. We do this by using gzip -c (to standard out) -d
(decompress), passing the name of our compressed file but piping the output
to our hash algorithm (in this case shalsum). The result shows the correct

()

hash of the output stream, where the output stream is signified by the “-”.

Okay, so now that we have a basic grasp of using gzip to compress,
decompress, and verify hashes, let's put it to work “on the fly” using dd to
create a compressed image. We will then check the compressed image's hash
value against an original hash.

Let's continue to use our practical exercise floppy image. First, write the
image back to a physical floppy disk (as we did in the original practical
exercise). Clear out the testcomp directory so that we have a clean place to
write our image to.

Barry J. Grundy 89

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Obtaining a compressed dd image on the fly is simply a matter of
streaming our dd output through a pipe to the gzip command and redirecting
that output to a file. Our resulting image's hash can then be checked using the
same method we used above. Consider the following session. Our physical
device is the floppy disk in /dev/fd0.

root@rock:~/testcomp # 1s -1h

<empty directory>

root@rock:~/testcomp # shalsum /dev/fdo
f5ee9cf56123e5f5773€2a4854360404a62015cf /dev/fde

root@rock:~/testcomp # dd if=/dev/fd0@ | gzip -c > floppy.dd.gz
2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB) copied, 0.393626 s, 3.7 MB/s

root@rock:~/testcomp # 1s -1lh
total 636K
-rw-r--r-- 1 root root 632K May 22 09:58 floppy.dd.gz

root@rock:~/testcomp # gzip -cd floppy.dd.gz | shalsum
f5ee9cf56123e5f5773€2a4854360404a62015¢cf -

root@rock:~/testcomp # 1s -1lh
total 636K
-rw-r--r-- 1 root root 632K May 22 09:58 floppy.dd.gz

In the above dd command there is no “output file” specified (no “of=").
The output is simply directed straight to gzip for redirection into a new file. We
then follow up with our integrity check by decompressing the file to standard
output and hashing the stream. The hashes match, so we can see that we used
dd to acquire a compressed image, and verified our acquisition without the
need to decompress (and write to disk) first.

Barry J. Grundy 90

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Data Carving with DD

In this next example, we will use dd to carve a JPEG image from a chunk
of raw data. By itself, this is not a real useful exercise. There are lots of tools
out there that will “carve” files from forensic images, including a simple cut
and paste from a hex editor. However, the purpose of this exercise is to help
you become more familiar with dd. In addition, you will get a chance to use a
number of other tools in preparation for the “carving”. This will help
familiarize you further with the Linux toolbox. First you will need to download
the raw data chunk from:

http://www.LinuxLEO.com/Files/image carve.raw

Have a brief look at the file image_carve.raw with your wonderful
command line hexdump tool, xxd:

root@rock:~# xxd image_carve.raw | less
0000000: 776a 176b 5fd3 9eae 247f 33b3 efbe 8d6a wj.k_...$.3....]

0000010: d3a9 daa® 8eef ¢199 102f 7eaa 0c68 a%968 /~..h..
0000020: fcad 7el3 dc6b 17a9 e973 35a0 cfc3 9360 ..~..k...s5....~
0000030: f9cO a6b9 1476 b268 dedf 94fa a2f4 4705 v.h...... G.

0000040: 452d 7691 ebaf 2fa7 b31f 328b cbG7a ce3d E-v..0/...2..z.=
<continues>

It’s really just a file full of random characters. Somewhere inside there is
a standard JPEG image. Let’s go through the steps we need to take to “recover”
the picture file using dd and other Linux tools. We are going to stick with
command line tools available in most default installations.

First we need a plan. How would we go about recovering the file? What
are the things we need to know to get the image (picture) out, and only the
image? Imagine dd as a pair of scissors. We need to know where to put the
scissors to start cutting, and we need to know where to stop cutting. Finding
the start of the JPEG and the end of the JPEG can tell us this. Once we know
where we will start and stop, we can calculate the size of the JPEG. We can then
tell dd where to start cutting, and how much to cut. The output file will be our
JPEG image. Easy, right? So here’s our plan, and the tools we’ll use:

1) Find the start of the JPEG (xxd and grep)

2) Find the end of the JPEG (xxd and grep)

3) Calculate the size of the JPEG (in bytes using bc)

4) Cut from the start to the end and output to a file (using dd)

Barry J. Grundy 91

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

This exercise starts with the assumption that we are familiar with
standard file headers. Since we will be searching for a standard JPEG image
within the data chunk, we will start with the stipulation that the JPEG header
begins with hex ffd8 with a six-byte offset to the string “JFIF’. The end of the
standard JPEG is marked by hex ffd9.

Let’s go ahead with step 1: Using xxd, we pipe the output of our
image_carve.raw file to grep and look for the start of the JPEG”:

root@rock:~# xxd image_carve.raw | grep ffd8
00052a0: b4af1l 559c ffd8 ffe® 0010 4a46 4946 0001 ..U....... JFIF..

As the output shows, using grep we’ve found the pattern “ffd8” near the
string “JFIF’. The start of a standard JPEG file header has been found. The
offset (in hex) for the beginning of this line of xxd output is 00052a0. Now we
can calculate the byte offset in decimal. For this we will use the bc command.
bc is a command line “calculator”, useful for conversions and calculations. It
can be used either interactively or take piped input. In this case we will echo
the hex offset to bc, first telling it that the value is in base 16. bc will return the
decimal value.

root@rock:~# echo "ibase=16;00052A0" | bc
21152

It’s important that you use uppercase letters in the hex value. Note that
this is NOT the start of the JPEG, just the start of the line in xxd’s output. The
“ffd8” string is actually located another 4 bytes farther into that line of output.
So we add 4 to the start of the line. Our offset is now 21156. We have found
and calculated the start of the JPEG image in our data chunk.

Now it’s time to find the end of the file.
Since we already know where the JPEG starts, we will start our search for

the end of the file from that point. Again using xxd and grep we search for the
string:

root@rock:~# xxd -s 21156 image_carve.raw | grep ffd9
0006c74: ffd9 d175 650b ce68 4543 Obf5 6705 a73c ...ue..hEC..g..<

% The perceptive among you will notice that this is a “perfect world” situation. There are a number of variables that
can make this operation more difficult. The grep command can be adjusted for many situations using a complex
regular expression (outside the scope of this document).

Barry J. Grundy 92

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The -s 21156 specifies where to start searching (since we know this is
the front of the JPEG, there’s no reason to search before it and we eliminate
false hits from that region). The output shows the first “ffd9” at hex offset

0006c¢74. Let’s convert that to decimal:

root@rock:~# echo "ibase=16;0006C74" | bc
27764

Because that is the offset for the start of the line, we need to add 2 to the
value to include the ffd9 (giving us 27766). Now that we know the start and the

end of the file, we can calculate the size:

root@rock:~# echo "27766 - 21156" | bc
6610

We now know the file is 6610 bytes in size, and it starts at byte offset
21156. The carving is the easy part! We will use dd with three options:

skip= how far into the data chuck we begin “cutting”.
bs= (block size) the number of bytes we include as a “block”.
count = the number of blocks we will be “cutting”.

The input file for the dd command is image_carve.raw. Obviously, the
value of skip will be the offset to the start of the JPEG. The easiest way to
handle the block size is to specify it as bs=1 (meaning one byte) and then
setting count to the size of the file. The name of the output file is arbitrary.

root@rock:~# dd if=image_carve.raw of=carv.jpg skip=21156 bs=1 count=6610

6610+0 records in
6610+0 records out

You should now have a file in your current directory called carv.jpg. If
you are in X, simply use the xv command to view the file (or any other image

viewer) and see what you’ve got.

root@rock:~# xv carv.jpg

xv from a command line (while in an X session) will display the graphic

image in it's own window.

Barry J. Grundy 93

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Carving Partitions with DD

Now we can try another useful exercise in carving with dd. Often, you
will obtain or be given a dd image of a full disk. At times you might find it
desirable to have each separate partition within the disk available to search or
mount. Remember, you cannot simply mount an entire disk image, only the
partitions.

There are commercial solutions to mounting partitions within an entire
image, like SMART for Linux forensic software. Recent advances in forensic
tools like The Sleuthkit have make the ability to carve partitions from an image
less important that it once was. For the beginning Linux forensics student, |
would still consider this an important skill, however. Plus, it's just good
practice for a number of Linux commands. We introduce this technique here
not to teach it for practical use, but to provide another practical exercise using
a number of important command line tools.

The method we will use in this exercise entails identifying the partitions
within a dd image with fdisk or sfdisk. We will then use dd to carve the
partitions out of the image.

First, let’s grab the practice disk image that we will be working on. This
is a dd image of a 330MB disk from a Linux system that was compromised.

http://www.LinuxLEO.com/Files/able2.tar.gz

The tar archive contains the disk image, the MD5 digest values, and the
imaging log file with information collected during the imaging process.

Create a directory called “able2” in your /root directory. This will be the
working directory for the following exercise. Again, the vast majority of steps
taken in preparation for, and execution of a forensic analysis require root
access to commands and devices. Once you have downloaded the file into that
able2 directory, change to that directory and check the md5sum™ (it should
match the output below):

root@rock:~/able2 # md5sum able2.tar.gz
7863920262cad3b30333192fd50965b8 able2.tar.gz

The file name is derived from the original hostname of the machine that
was compromised. Very often we name our cases and evidence with the

9 Yes, we are using md5sum here but we used shalsum earlier...Consistency is overrated! ;-)

Barry J. Grundy 94

http://www.LinuxLEO.com/Files/able2.tar.gz

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

original hostname of the machine we are investigating (whether a victim or a
hostile).

If the MD5 matches, then we can continue...We now need to check the
contents of the tar archive, then extract and decompress the archive.

root@rock:~/able2 # tar tzvf able2.tar.gz
-rwxrwxr-x root/root 345830400 2003-08-10 21:16:36 able2.dd <-Disk image

-rwxrwxr-x root/root 3700 2003-08-11 07:56:04 able2.log <-collection log
-rwxrwxr-x root/root 43 2003-08-10 21:16:36 md5.dd <-image hash
-rwXrwxr-x root/root 43 2003-08-10 21:04:40 md5.hdd <-original disk hash
root@rock:~/able2 # tar xzvf able2.tar.gz

able2.dd

able2.log

md5.dd

md5 . hdd

The second command above executes the tar command with the
options x to extract the files, z to decompress the files, v for verbose output, and
f to specify the file.

Have a look at the files that result:

root@rock:~/able2 # 1s -1lh

total 465M

-rwxrwxr-x 1 root root 330M Aug 10 2003 able2.dd
-rwxrwxr-x 1 root root 3.7K Aug 11 2003 able2.log
-rwxr-x--- 1 root root 135M Jan 31 13:18 able2.tar.gz
-rwxrwxr-x 1 root root 43 Aug 10 2003 md5.dd
-rwxrwxr-x 1 root root 43 Aug 10 2003 md5.hdd

The output of Is -lh (the -1h is for “long list with human readable sizes”)
shows the 330MB dd image, the log file and two files that record the original
MD?5 hashes, one for the image (md5.dd) and one for the original disk
(md>5.hdd). At this point you can check the hash of the able2.dd and compare it
to the value stored in mdb5.dd (gathered when the system was originally
imaged) to be sure the image is intact.

root@rock:~/able2 # cat md5.dd
02b2d6fc742895fa4af9fa566240b880 able2.dd

root@rock:~/able2 # md5sum able2.dd
02b2d6fc742895fa4af9fa566240b880 able2.dd

Barry J. Grundy 95

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Okay, now we have our image, and we have verified that it is an accurate
copy. We now want to know a little bit about the contents of the image and
what it represents. During the evidence acquisition process, it is essential that
information about the disk be recorded. Standard operating procedures
should include collection of disk and system information, and not just the dd
image itself.

The file able2.log was created from the output of various commands
used during the evidence collection process. The log includes information
about the investigator that gathered the evidence, information about the
system, and the output of commands including hdparm, fdisk, sfdisk and
hashing functions. We create the log file by appending (“>>") the output of the
commands, in sequence, to the log:

command >> logfile.txt
Look at the log file, able2.log, using less and scroll down to the section

that shows the structure of the disk (the output of fdisk -1 /dev/hdd and sfdisk
-] —uS /dev/hdd):

root@rock:~/able2 # less able2.log

<scrolled output>

HHAHBHAHBHABHA B HA B HA A H A AR HH AR AR R R R R R
fdisk output for SUBJECT disk:

Disk /dev/hdd: 345 MB, 345830400 bytes
15 heads, 57 sectors/track, 790 cylinders
Units = cylinders of 855 * 512 = 437760 bytes

Device Boot Start End Blocks Id System
/dev/hdd1 1 12 5101+ 83 Linux
/dev/hdd2 13 132 51300 83 Linux
/dev/hdd3 133 209 32917+ 82 Linux swap
/dev/hdd4 210 790 248377+ 83 Linux

HHBH R HHH PR R R
sfdisk output for SUBJECT disk:

Disk /dev/hdd: 790 cylinders, 15 heads, 57 sectors/track
Units = sectors of 512 bytes, counting from 0

Device Boot Start End #sectors Id System
/dev/hdd1 57 10259 10203 83 Linux
/dev/hdd2 10260 112859 102600 83 Linux
/dev/hdd3 112860 178694 65835 82 Linux swap
/dev/hdd4 178695 675449 496755 83 Linux

HHBHBHBH IR R A AR R R R R R R R R

Barry J. Grundy 96

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The output shown above is directly from the victim hard drive (the
machine able2), recorded prior to obtaining the dd image. It shows that there
are 4 partitions on the drive. The data partitions are hddl, hdd2 and hdd4. The
hdd3 partition is actually a swap partition (for virtual memory). Remember
that the designation hdd indicates that the victim hard drive was attached to
our forensic workstation as the slave drive on the secondary IDE controller
during the imaging process, NOT how it was attached in the original machine.

The command sfdisk -1 -uS /dev/hdd gave us the second listing above
and shows the partition sizes in units of “sectors” (-uS). The output also gives
us the start of the partition. For our partition carving exercise (as with the raw
data carving), all we need is the starting offset, and the size.

Let’s go ahead and dd out each partition. If you have the output of
sfdisk -1 —uS /dev/hdx, the job is easy.

root@rock:~/able2 # dd if=able2.dd of=able2.partl.dd bs=512 skip=57 count=10203
10203+0 records in

10203+0 records out

root@rock:~/able2 # dd if=able2.dd of=able2.part2.dd bs=512 skip=10260 count=102600
102600+0 records in

102600+0 records out

root@rock:~/able2 # dd if=able2.dd of=able2.part3.dd bs=512 skip=112860 count=65835
65835+0 records in

65835+0 records out

root@rock:~/able2 # dd if=able2.dd of=able2.part4.dd bs=512 skip=178695 count=496755
496755+0 records in

496755+0 records out

Examine these commands closely. The input file (if=able2.dd) is the full
disk image. The output files (of=able2.part#.dd) will contain each of the
partitions. The block size that we are using is the sector size (bs=512), which
matches the output of the sfdisk command. Each dd section needs to start
where each partition begins (skip=X), and cut as far as the partition goes
(count=Y). We also obtained partition number three, the swap partition. This
can also be searched with grep and strings (or carving utilities) for evidence.

This will leave you with four able2.part*.dd files in your current directory
that can now be loop mounted.

What if you have a dd image of the full disk, but no log file or access to
the original disk, and therefore no info from sfdisk or fdisk? We can run the
sfdisk or fdisk commands directly on the image if we like. Remember that the
original disk that the image was obtained from was seen as a simple file
(/dev/hdx) and the image we obtain using dd is also simply a file. So why would

Barry J. Grundy 97

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

tools like fdisk treat them any differently. The hashes match, so they are
essentially the same file:

root@rock:~/able2 # sfdisk -1 -uS able2.dd
Disk able2.dd: cannot get geometry

...<error messages>

Units = sectors of 512 bytes, counting from 0

Device Boot Start End #sectors Id System
able2.dd1 57 10259 10203 83 Linux
able2.dd2 10260 112859 102600 83 Linux
able2.dd3 112860 178694 65835 82 Linux swap / Solaris
able2.dd4 178695 675449 496755 83 Linux

Aside from the error messages at the beginning of the output (removed
for readability), notice that the actual disk geometry (in sectors) matches that
taken from the original disk. The partitions are now noted as able2.dd*,
indicating, “able2.dd image, partitions 1 through 4”. In a pinch, we could use
this to gather information from the image file we were given, to determine the
partitioning scheme of the disk that was imaged.

Unfortunately, you cannot mount the partitions associated with
able2.dd*. The block devices don’t actually exist (able2.dd*).

Determining the Subject Disk File System Structure

Going back to our able2 case dd images, we now have the original image
along with the partition images that we carved out.

able2.dd (original image)
able2.partl.dd (1% Partition)
able2.part2.dd (2™ Partition)
able2.part3.dd (3™ Partition)
able2.part4.dd (4™ Partition)

The next trick is to mount the partitions in such a way that we
reconstruct the original file system. This generally pertains to subject disks
that were imaged from Unix hosts.

One of the benefits of Linux/Unix systems is the ability to separate the
file system across partitions. This can be done for any number of reasons,
allowing for flexibility where there are concerns about disk space or security,
etc.

For example, a System Administrator may decide to keep the directory

/var/log on its own separate partition. This might be done in an attempt to
prevent rampant log files from filling the root (“/” not “/root”) partition and

Barry J. Grundy 98

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

bringing the system down. Itis common to see /boot in its own partition as
well. This allows the kernel image to be placed near “the front” (in terms of
cylinders) of a hard drive, an issue in older versions of the Linux boot loader
LILO. There are also a variety of security implications addressed by this setup.

So when you have a disk with multiple partitions, how do you find out
the structure of the file system? Earlier in this paper we discussed the /etc/fstab
file. This file maintains the mounting information for each file system,
including the physical partition; mount point, file system type, and options.
Once we find this file, reconstructing the system is easy. With experience, you
will start to get a feel for how partitions are setup, and where to look for the
fstab. To make things simple here, just mount each partition (loopback, read
only) and have a look around.

One thing we might like to know is what sort of file system is on each
partition before we try and mount them. We can use the file command to do
this"'. Remember from our earlier exercise that the file command determines
the type of file by looking for “header” information.

root@rock:~/able2 # file able2.part*

able2.partil.dd: Linux rev 1.0 ext2 filesystem data (mounted or unclean)
able2.part2.dd: Linux rev 1.0 ext2 filesystem data (mounted or unclean)
able2.part3.dd: Linux/i386 swap file (new style) 1 (4K pages) size 8228 pages
able2.part4.dd: Linux rev 1.0 ext2 filesystem data (mounted or unclean)

Previously, we were able to determine that the partitions were “Linux”
partitions from the output of fdisk and sfdisk. Now file informs us that the file
system type is ext2'?>. We can use this information to mount the partitions.

root@rock:~/able2 # mount -t ext2 -o ro,loop able2.partl.dd /mnt/analysis/

Do this for each partition (either unmounting between partitions, or
mounting to a different mount point) and you will eventually find the /etc
directory containing the fstab file in able2.part2.dd with the following
important entries:

root@rock:~/able2 # cat /mnt/analysis/etc/fstab

/dev/hda2 / ext2 defaults 11
/dev/hdal /boot ext2 defaults 12
/dev/hda4 /usr ext2 defaults 12
/dev/hda3 swap swap defaults 00

I Keep in mind that the file command relies on the contents of the magic file to determine a file type. If this command
does not work for you in the following example, then it is most likely because the magic file on your system does not
include headers for file system types.

12 You can also use the auto file system type under the mount command, but I prefer to be explicit. Check man mount
for more information.

Barry J. Grundy 99

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

So now we see that the logical file system was constructed from three
separate partitions (note that /dev/hda here refers to the disk when it is
mounted in the original system):

“I” (root) mounted from /dev/hda2 (data on hda2)
| bin/ (data on hda2)
|_boot/ mounted from /dev/hdal (data on hdal)
|_dev/ (data on hda2)
|_etc/ (data on hda2)
|_home/ (data on hda2)
|_lib/ (data on hda2)
|_opt/ (data on hda2)
|_proc/ (data on hda2)
|_usr/ mounted from/devihda4 (data on hda4)
|_root/ (data on hda?2)
|_sbin/ (data on hda2)
|_tmp/ (data on hda2)
|_var/ (data on hda2)

Now we can create the original file system at our analysis mount point.
The mount point /mnt/analysis already exists. When you mount the root
partition of able2.dd on /mnt/analysis, you will note that the directories
/mnt/analysis/boot and /mnt/analysis/usr are empty. That is because we have to
mount those partitions to access the contents of those directories.

root@rock:~/able2 # mount -t ext2 -o ro,loop able2.part2.dd /mnt/analysis/
root@rock:~/able2 # mount -t ext2 -o ro,loop able2.partl.dd /mnt/analysis/boot
root@rock:~/able2 # mount -t ext2 -o ro,loop able2.partd4.dd /mnt/analysis/usr

We now have the recreated original file system under /mnt/analysis:

“/” (root) mounted on /mnt/analysis

| bin/

_boot/ mounted on /mnt/analysis/boot
| dev/

_etc/

| _home/

| lib/

_opt/

_proc/

|_usr/ mounted on /mnt/analysis/usr
_root/

|_sbin/

tmp...

Barry J. Grundy 100

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

At this point we can run all of our searches and commands just as we did
for the previous floppy disk exercise on a complete file system “rooted” at
/mntl/analysis.

As always, you should know what you are doing when you mount a
complete file system on your forensic workstation. Be aware of options to the
mount command that you might want to use (check man mount for options
like “nodev” and “nosuid”’, “noatime” etc.). Take note of where links point to
from the subject file system. Note that we have mounted the partitions “read
only” (ro). Remember to unmount each partition when you are finished
exploring.

DD Quer the Wire

There may occasions where you want or need to acquire an image of a
computer using a boot disk and network connectivity. Most often, this
approach is used with a Linux boot disk on the subject machine (the machine
you are going to image). Another computer, the imaging collection platform, is
connected either via a network hub or switch; or through a crossover cable.
There are a variety of configurations possible. These sorts of acquisitions can
even take place across the country or anywhere around the world. The reasons
and applications of this approach are outside of the scope of this paper, so we
will concentrate on the mechanics and the very basic commands required.

First, lets clarify some terminology for the purpose of our discussion
here. In this instance, the computer we want to image will be referred to as the
“subject” computer. The computer to which we are writing the image will be
referred to as the “collection” box.

In order to accomplish imaging across the network, we will need to

setup our collection box to “listen” for data from our subject box. We do this
using netcat, the nc command. The basic setup looks like this:

Barry J. Grundy 101

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Linw
Bootable

Evidence Collection
cD

Platform
IP: 192.168.55.20

Subject Computer
IP: 192.168.55.10

—*_,

Crossowver Cable ‘ \
or
Connection through hub, etc.

Evidence drive
(fmntfevid)

The first step is to open a “listening” port on the collection computer.
We will do this on our forensic system with nc:

root@rock: ~ # nc -1 -p 2525 | dd of=/mnt/evid/net_image.dd

This command opens a listening session (-1) on TCP port 2525 (-p 2525)
and pipes any traffic that comes across that port to the dd command (with only
the “output file” flag), which writes the file / mnt/evid/net_image.dd.

Next, on the subject computer (note that the command prompt
identifies this a computer with the hostname “bootdisk”), we issue the dd
command. Instead of giving the command an output file parameter using of=,
we pipe the dd command output to netcat (nc) and send it to our listening port
(2525) on the collection computer at IP address 192.166.55.20.

root@bootdisk ~ # dd if=/dev/sda | nc 192.168.55.20 2525

This command pipes the output of dd straight to nc, directing the image
over the network to TCP port 2525 on the host 192.168.5.20 (our collection
box's IP address). If you want to use dd options like conv=noerror,sync or
bs=x, then you do that on the dd side of the pipe:

root@bootdisk ~ # dd if=/dev/sda bs=4096 | nc 192.168.55.20 2525

Barry J. Grundy 102

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Once the imaging is complete, we will see that the commands at both
ends appear to “hang”. After we receive our completion messages from dd on
the subject box (records in / records out), we can kill the nc listening on our
collection box with a simple ctrl c. This should return our prompts on both
sides of the connections. You should then check both the hash of the physical
disk that was imaged on the subject computer and the resulting image on the
collection box to see if they match.

Barry J. Grundy 103

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

X. Advanced Forensic Tools

So now you have some experience with using the Linux command line
and the powerful tools that are provided with a Linux installation.
However, as forensic examiners, we soon come to find out that time is a
valuable commodity. While learning to use the command line tools native to a
Linux install is useful for a myriad of tasks in the “real world”, it can also be
tedious. After all, there are Windows based tools out there that allow you to do
much of what we have discussed here in a simple point and click GUI. Well,
the same can be said for Linux.

The popularity of Linux is growing at a fantastic rate. Not only do we see
itin an enterprise environment and in big media, but we are also starting to see
its widening use in the field of computer forensics. In recent years we’ve seen
the list of available forensic tools for Linux grow with the rest of the industry.

In this section we will cover a number of forensic tools available to make
your analysis easier and more efficient. We will cover both free tools and
commercial tools. We will start with some alternative imaging tools, specially
designed to work with forensic acquisitions in mind.

AUTHOR’S NOTE: Inclusion of tools and packages in this section in no
way constitutes an endorsement of those tools. Please test them
yourself to ensure that they meet your needs. The tools here were
chosen because it was suggested by a large number of readers of the
original Introduction document that I provide information on forensic
packages for Linux.

Since this is a Linux document, I am covering available Linux tools. This
does not mean that the common tools available for other platforms
cannot be used to accomplish many of the same results. On a personal
note, I do maintain that analysis of a Unix system is best accomplished
with a Unix (like) tool set.

One more note: Please keep in mind, as you work through these
exercises, this document is NOT meant to be an education in file system
analysis. As you work through the exercises you will come across terms like
inode, MFT entry, allocation status, partition tables and direct and indirect
blocks, etc. These exercises are about using the tools, and are not meant to
instruct you on basic forensic knowledge, Linux file systems or any other file
systems. This is all about the tools.

If you need to learn file system structure as it relates to computer
forensics, please read Brian Carrier's book: File System Forensic Analysis

Barry J. Grundy 104

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

(Published by Addison-Wesley, 2005). This is not the last time I will suggest
this.

To get a quick overview of some file systems, you can do a quick Internet
search. There is a ton of information readily available if you need a primer.
Here are some simple links to get you started™. If you have questions on any of
these file systems, or how they work, I would suggest some light reading before
diving into these exercises.

NTFS: http://www.ntfs.com
http://en.wikipedia.org/wiki/NTFS

EXT2/3: http://e2fsprogs.sourceforge.net/ext2intro.html
http://en.wikipedia.org/wiki/Ext3

FAT: http://en.wikipedia.org/wiki/File allocation table

Also, once you install the Sleuthkit (covered in an upcoming section)
you should have a look in the ./sleuthkit-3.xx/docs/ directory (or wherever the
source is installed) for the Sleuthkit Implementation Notes (or SKINs). These
files contain some excellent detailed information on file system structure.

3 The author does not vouch for any of these sources. They are provided for your information only.

Barry J. Grundy 105

http://en.wikipedia.org/wiki/File_allocation_table
http://en.wikipedia.org/wiki/Ext3
http://e2fsprogs.sourceforge.net/ext2intro.html
http://en.wikipedia.org/wiki/NTFS
http://en.wikipedia.org/wiki/NTFS
http://www.ntfs.com/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Alternative Imaging Tools

Standard Linux dd is a fine imaging tool. It is robust, well tested, and
has a proven track record. We've already demonstrated some of it's
capabilities beyond what many consider “normal” forensic imaging functions.

As good as dd is as an imaging tool, it has one simple, perceived flaw: It
was never actually designed to be used for forensic acquisitions. Itis very
capable, but some practitioners prefer full featured imaging tools that do not
require external programs to accomplish logging, hashing, and imaging error
documentation. Additionally, dd is not the best solution for obtaining
evidence from damaged or failing media.

There are a number of forensic specific tools out there for Linux users
that wish to acquire evidence. Some of these tools include:

e dc3dd -enhanced dd program for forensic use (based on dd code).

e dcfldd - enhanced dd program for forensic use (fork of dd code).

e aimage - forensic imaging tool provided primarily to create images in
the Advanced Forensic Format (AFF). Future versions of this guide will
likely cover aimage and afflib in more detail.

e ewfacquire - Provided as part of the libewf project, this tool is used to
acquire Expert Witness Format (EWF) images. We will cover it in some
detail later.

e AIR-Automated Image and Restore, a GUI front end to both dd and
dcfldd.

e GNU ddrescue — An imaging tool specifically designed to recover data
from media exhibiting errors (not to be confused with dd_rescue).

This is not an exhaustive list. These, however, are the most commonly
used (as far as I know). We will cover the first in the list (dc3dd) and the last in
the list (ddrescue) in this document. Later on, in the section on Advanced
Tools we will cover ewfacqure, installed as part of the libewfpackage.

dc3dd

The first tool we will cover is de3dd. This is a newer imaging tool based
on original (patched) code from dd. Itis very similar to the popular dcfldd but
provides a slightly different feature set. My choice of whether to cover either
dcfldd or dc3dd is largely arbitrary. One of the reasons I decided to cover
dc3dd here is it's relationship to recent dd code updates, including direct /O
capabilities. dc3dd is maintained by the DoD (Department of Defense) Cyber

Barry J. Grundy 106

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Crime Center (other wise known as Dc3)'* Regardless of which (dc3dd or
dcfldd) you prefer, familiarity with one of these tools will translate very nicely
to the other with some reading and experimentation, as they are very similar.
While there are significant differences, many of the features we discuss in this
section are common to both de3dd and dcfldd.

The source package and more information for dec3dd can be found at
http://dc3dd.sourceforge.net. That page also provides a good summary of the
capabilities of dc3dd and it's overall intent.

Installation of dc3dd follows the same routine of most source packages
available in Linux. These packages are commonly called “tarballs” and end
with the tar.gz or tar.bz2 extensions, depending on the method of
compression. In general, once the “tarball” has been extracted, the common
commands to compile and install the package are simply (from the extracted
directory):

./configure
make
make install

So, once we have the package downloaded, we can extract the tarball in
the same way we extracted any of the other rar.gz files we worked with:

root@rock:~# tar xzvf dc3dd-6.9.91.tar.gz
dc3dd-6.9.91/
dc3dd-6.9.91/.prev-version
dc3dd-6.9.91/.version
dc3dd-6.9.91/.vg-suppressions
dc3dd-6.9.91/.x-po-check
dc3dd-6.9.91/.x-sc_file_system
dc3dd-6.9.91/.x-sc_GPL_version
dc3dd-6.9.91/.x-sc_obsolete_symbols
dc3dd-6.9.91/.x-sc_prohibit_atoi_atof
<continues>

After the package has been extracted, we change into the resulting
directory and then run a “configure script” to allow the program to ascertain
our system configuration and prepare compiler options for our environment.
We do this by issuing the command ./configure:

“DCFLdd is also named for a DoD entity — the Defense Computer Forensics Lab.

Barry J. Grundy 107

http://dc3dd.sourceforge.net/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# cd dc3dd-6.9.91/

root@rock:~/dc3dd-6.9.91# ./configure
checking build system type... i686-pc-linux-gnu
checking host system type... 1i686-pc-linux-gnu

configure: autobuild project... dc3dd
configure: autobuild revision... 6.9.91
configure: autobuild hostname... rockriver

configure: autobuild timestamp... 20080807-202619

checking for a BSD-compatible install... /usr/bin/ginstall -c
checking whether build environment is sane...

<continues>

Assuming no errors, we type make and watch the compiler go to work.

root@rock:~/dc3dd-6.9.91# make
Making all in 1lib
make[1]: Entering directory "/root/Tools/dc3dd-6.9.91/1ib'
{ echo '/* DO NOT EDIT! GENERATED AUTOMATICALLY! */'; \
cat ./alloca.in.h; \
} > alloca.h-t
mv -f alloca.h-t alloca.h
rm -f configmake.h-t configmake.h
{ echo '/* DO NOT EDIT! GENERATED AUTOMATICALLY! */'; \
<continues>

Finally, in order to call the various tools without using the full path to
the compiled binaries, we must run the command that properly installs both
the tools to the proper path, and any required libraries to the proper
directories. This is accomplished with make install.

root@rock:~/dc3dd-6.9.91# make install

Making install in lib

make[1]: Entering directory "“/root/Tools/dc3dd-6.9.91/1ib'

make install-am

make[2]: Entering directory "“/root/Tools/dc3dd-6.9.91/1ib'

make[3]: Entering directory °“/root/Tools/dc3dd-6.9.91/1ib'

test yes !'= no || /bin/sh /root/Tools/dc3dd-6.9.91/build-aux/install-sh
-d /usr/local/lib

if test -f /usr/local/lib/charset.alias; then \

<continues>

Our tool is now installed and ready to use.

One point to ponder if you are looking for the man page for de3dd: The
install routine does not copy the man page to the correct default location on
our Slackware system (other OS versions may very). However, the dc3dd man
page is essentially the same as the information provided by the --help option.

Barry J. Grundy 108

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

So, you can either run dc3dd with the --help option, or you can copy the
man page file to the correct location':

root@rock:~/dc3dd-6.9.91# cp man/dc3dd.1 /usr/local/man/manil/
root@rock:~/dc3dd-6.9.91# man dc3dd
DD(1) User Commands DD(1)

NAME
dd - convert and copy a file

SYNOPSIS
dc3dd [OPERAND]...
dc3dd OPTION
<continues>

OR simply:

root@rock:~/dc3dd-6.9.91# dc3dd --help
Usage: dc3dd [OPERAND]...
or: dc3dd OPTION
Copy a file, converting and formatting according to the operands.

bs=BYTES force ibs=BYTES and obs=BYTES
cbs=BYTES convert BYTES bytes at a time
<continues>

Since we are already talking about the help page, let's have a look at the
basic usage of dc3dd. As you read through the usage section of the man page,
you'll notice a number of additions to regular dd for the forensic examiner.
Let's concentrate on these notables:

e split=BYTES split the output into pieces of size BYTES
e splitformat=FMT create extensions for split pieces using FMT...
e progress=on displays a progress meter

e hash=ALGORITHM computes ALGORITHM hashes of the input data
e hashwindow=BYTES number of bytes for piecewise hashing

e log=FILE appends hashes and errors to the same file

e verifylog=FILE write the results of the verify to the given file

Essentially, dc3dd (and similarly dcfldd) has incorporated the hashing,
splitting and logging of our acquisition into a single command. All of this can
be done with regular dd and external tools, but there is no doubt many
practitioners prefer an integrated approach. The standard options available to
the regular dd command still work with the forensic editions (bs, skip, etc.).

50r adjust SMANPATH, etc

Barry J. Grundy 109

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

More than just incorporating the other steps into a single command,
dc3dd extends the functionality. For example, using a regular split command
with dd as we did in a previous exercise, we can either allow the default
alphabetic naming convention of split, or pass the -d option to provide us with
decimal extensions on our files. In contrast, dc3dd allows us to not only define
the size of each split as an option to the imaging command without need for a
piped command, but it also allows more granular control over the format of the
extensions each split will have as part of its filename. So, to split a 6 GB disk
into 2 GB images, I would simply pass:

split=2G

The extension following the output file name can be formatted with the
splitformat option. This option allows us to specify alphabetical or numerical
extensions from 1 to 4 characters in length. Numerical extensions can either
begin from 1 or from 0. The number of characters passed with the option
defines the length of the extension. The following table provides some
examples:

Option Resulting extensions

splitformat=aa *aa (two alphabetic chars)
*ab
*.ac

splitformat=aaaa *aaaa (four alphabetic chars)
*.aaab
*.aaac

splitformat=000 *.000 (three numeric chars — starts with 000)
*001
*002

splitformat=111 *.001 (three numeric chars- starts with 001)
*002
*003

In addition, when using regular GNU dd, our hashing functions are
performed external to the imaging, by either the md5sum or shalsum
commands, depending on the analyst preference. dc3dd allows the user to run
BOTH hashes concurrently on an acquisition and log the hashes.

We select our hash algorithm with the option hash=, specifying any of
md5, shal, sha256, sha512, or a comma separated list of algorithms. In this
way you can select multiple hash methods for a single image file. These will be
written to a log file we indicate (or to standard output if no log is specified).

Barry J. Grundy 110

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

dc3dd also provides a hashwindow function. The hashwindow= option
initiates “piecewise” hashing of the output, so you get a calculated hash over
each specified number of bytes, which is then logged. This allows for a more
granular view of the data integrity, should errors be encountered. The smaller
the hashwindow, the better granular view you have of the data.

So, to specify a hashwindow of 16MB using both SHA1 and MD5, you
would use the options:

hash=md5,shal hashwindow=16M

Both the hashwindow values and the hash of the total image will be
recorded either to standard out (the terminal) or to a log file if one is specified.
You can specify separate logs for error messages and hash values, or have both
of them written to a single file. The options for logging are:

hashlog=file hashes are written to this log file.
errlog=file error messages are written to this file.
log=file both hashes and error messages are consolidated in

a single log file.

Below is an example of a very basic dc3dd command used to image a
small 256MB thumb drive. Aside from the options covered above, we will also
use the progress=on option. This option gives us a running count of the
amount of data copied, as well as a running time and average data copied per
second.

root@rock:~# dc3dd if=/dev/sda of=image.dc3dd progress=on hash=md5
hashwindow=32M split=64M splitformat=000 log=image.log.txt
<running>

5039104 bytes (4.8 M) copied, 2.07115 s, 2.3 M/s

<finished>

506880+0 records in

506880+0 records out

259522560 bytes (248 M) copied, 109.425 s, 2.3 M/s

root@rock:~# 1ls -1h

total 312M

-rw-r--r-- 1 root root 64M 2008-07-13 07:48 image.dc3dd.000
-rw-r--r-- 1 root root 64M 2008-07-13 07:48 image.dc3dd.001
-rw-r--r-- 1 root root 64M 2008-07-13 07:49 image.dc3dd.002
-rw-r--r-- 1 root root 56M 2008-07-13 07:49 image.dc3dd.003
-rw-r--r-- 1 root root 596 2008-07-13 07:49 image.log.txt

Barry J. Grundy 111

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The options used above are:

if=/dev/sda input file is /dev/sda

of=image.dc3dd image is written to image.dc3dd (arbitrary
extension).

progress=on shows imaging progress as described above

hashwindow=32M calculates a hash of the data every 32 megabytes

hash=md5 describes the hash algorithm(s) to be used for each
hashwindow and for the total image.

split=64M the image is split into 64 megabyte chunks.

splitformat=000 the extensions on each image split will be three
numerical characters, starting from 0.

log=image.log.txt both the calculated hash values and any error
messages will be logged to the file image.log. txt

The resulting output (shown by our Is command above) gives us 4 split
image files, with numerical extensions starting with 000. We also have a log file
of our hashes and any error messages, which we can view with less or cat:

root@rock:~# cat image.log.txt

md5 0- 33554432: 3ef3e1146490631d10399be537b548ae

md5 33554432- 67108864: 84fblbb69b5b8a9dfd2c0f61b9ebb72d
md5 67108864- 100663296: 9b025bald8e7a96eb666d5252bfd53ch
md5 100663296- 134217728: cacl5f6afd76e0f9fd6c6cea93444f01
md5 134217728- 167772160: 26b9b1a732e0cf0®7591578392371e353
md5 167772160- 201326592: dde2fa565d6eala26a73466e0909f7ee
md5 201326592- 234881024: 58f06dd588d8ffb3beb46ada6309436b
md5 234881024- 259522560: a3e41cf8b32332ff504775ba44f49f3a
md5 TOTAL: c90ee2dfd36eae3aafds5fac9b8d2eb706

506880+0 records in

506880+0 records out

259522560 bytes (248 M) copied, 109.425 s, 2.3 M/s

As previously discussed, the log file contains our hashes and our error
messages. Each line in the log starts with the hash algorithm and the
hashwindow data range, followed by the calculated hash. The last hash line (or
lines, if multiple algorithms are specified), gives the hash over the total image,
which can be compared to a device hash, for example, to authenticate an
acquisition.

The log file ends with the standard dd output which shows the number
of “records” read and written. Even though it is not really an “error” message,
this information is normally written to stderr (standard error output), hence it's
inclusion in an error log. The records are equivalent to the block size option.
Since we did not specify an explicit block size, the default for this block device
is used, which is 512 bytes.

Barry J. Grundy 112

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

One final note on de3dd: Like regular dd, you can pass the option
conv=noerror,sync to the command. This would allow our acquisition to read
past any non-fatal disk errors and sync the output so that the resulting image
might still be usable. While many practitioners suggest this option as a default
for running dd related commands, I strongly urge against it. Some of the
reasons for this will become more apparent in the following section on
ddrescue. The bottom line is that if you need to use conv=noerror,sync then
you are using the wrong tool.

Which brings us to ddrescue.
ddrescue

The real reason I decided to add a section to this document on
alternative imaging tools was so that I could introduce ddrescue. Recent
testing has shown that standard dd based tools are simply inadequate for
acquiring disks that have a propensity for errors. This is NOT to say tools like
dd, dc3dd or dcfldd are useless, - far from it. They are just not optimal for
error recovery.

This section is not meant to provide an eduction on disk errors, media
failure, or types of failure. Nor is it meant to imply that any tool is better or
worse than any other. I will simply describe the basic functionality and leave it
to the reader to pursue the details.

First, let's start with the some of the issues that arise with the use of
common dd based tools. For the most part, these tools take a “linear”
approach to imaging, meaning that they start at the beginning of the input file
and read block by block until the end of the file is reached. When an error is
encountered, the tool will either fail with an “input/output” error, or if a
parameter such as conv=noerror is passed it will ignore the errors and attempt
to read through them, continuing to read block by block until it comes across
readable data again.

Obviously, simple failure (“giving up” when errors are encountered) is
not good, as it means that any data in readable areas beyond the errors will be
missed. The problem with ignoring the errors and attempting to read through
them (“conv=noerror”) is that we are further stressing a disk that is already
possibly on the verge of complete failure. The fact of the matter is that you
may only get one chance at reading a disk that is exhibiting “bad sectors”. If
there is an actual physical defect, the simple act of reading the bad areas may
make matters worse, leading to disk failure before other viable areas of the disk
are collected.

Barry J. Grundy 113

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

So, when we pass conv=noerror to an imaging command, we are
actually asking our imaging tools to “grind through” the bad areas. Why not
initially skip over the bad sections altogether, since in many cases recovery
may be unlikely, and concentrate on recovering data from areas of the disk that
are good? Once the “good” data is acquired, we can go back and attempt to
collect data from the error areas.

In a nutshell, that is the philosophy behind ddrescue. Used properly,
ddrescue will read the “healthy” portions of a disk first, and then fall back to
recovery mode — trying to read data from “bad sectors”. It does this through
the use of some very robust logging, which allows it to resume any imaging job
at any point, given a log file to work from.

Before we go any farther with a description, let's download and install
ddrescue and have a look at it's options.

You can obtain ddrescue from:

http://www.gnu.org/software/ddrescue/ddrescue.html

Once the file is downloaded, we go through the same set of build and
install commands we used for our previous “tarball” software archive. In this
case, the file we obtain from the above site is a tar.bz2 archive rather than a
tar.gz archive. This simply means that the compression is bzip2 rather than
gzip. As aresult, we use the j option with tar rather than the z option:

root@rock:~# tar xjvf ddrescue-1.8.tar.bz2
ddrescue-1.8/AUTHORS
ddrescue-1.8/COPYING
ddrescue-1.8/ChangelLog
ddrescue-1.8/INSTALL
ddrescue-1.8/Makefile.in
ddrescue-1.8/NEWS

<continues>

root@rock:~# cd ddrescue-1.8
root@rock:~/ddrescue-1.8# ./configure
creating config.status

creating Makefile

VPATH = .

CXXFLAGS = -Wall -W -02
LDFLAGS =

OK. Now you can run make.
<continues>

Barry J. Grundy 114

http://www.gnu.org/software/ddrescue/ddrescue.html

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/ddrescue-1.8# make

g++ -Wall -W -02 -c -0 arg_parser.o arg_parser.cc

g++ -Wall -W -02 -c -0 block.o block.cc

g++ -Wall -W -02 -c -0 ddrescue.o ddrescue.cc

g++ -Wall -W -02 -c -o fillbook.o fillbook.cc

g++ -Wall -W -02 -c -o logbook.o logbook.cc

g++ -Wall -W -02 -c -o rescuebook.o rescuebook.cc

g++ -Wall -W -02 -DPROGVERSION=\"1.8\" -c -0 main.o main.cc

g++ -0 ddrescue arg_parser.o block.o ddrescue.o fillbook.o logbook.o
rescuebook.o main.o

root@rock:~/ddrescue-1.8# make install

if test ! -d /usr/local/share/info ; then install -d
/usr/local/share/info ; fi

install -p -m 644 ./doc/ddrescue.info
/usr/local/share/info/ddrescue.info

install-info /usr/local/share/info/ddrescue.info /usr/local/share/info/
dir

if test ! -d /usr/local/bin ; then install -d /usr/local/bin ; fi
install -p -m 755 ./ddrescue /usr/local/bin/ddrescue

The documentation for ddrescue is excellent. The detailed manual is in
an info page. The command info ddrescue will give you a great start
understanding how this program works, including examples and the ideas
behind the algorithm used. I'll run through the process here, providing a
“forensic” perspective.

The first consideration when using any recovery software, is that the
disk must be accessible by the Linux kernel. If the drive does not show up in
the /dev structure, then there's no way to get tools like ddrescue to work.

Next, we have to have a plan to recover as much data as we can from a
bad drive. The prevailing philosophy of ddrescue is that we should attempt to
get all the good data first. This differs from normal dd based tools, which
simply attempt to get all the data at one time in a linear fashion. ddrescue uses
the concept of “splitting the errors”. In other words, when an area of bad
sectors is encountered, the errors are split until the “good” areas are properly
imaged and the unreadable areas marked as bad. Finally, ddrescue attempts to
retry the bad areas by re-reading them until we either get data or fail after a
certain number of specified attempts.

There are a number of ingenious options to ddrescue that allow the user
to try and obtain the most important part of the disk first, then move on until
as much of the disk is obtained as possible. Areas that are imaged successfully
need not be read more than once. As mentioned previously, this is made
possible by some very robust logging. The log is written periodically during the
imaging process, so that even in the event of a system crash the session can be

Barry J. Grundy 115

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

restarted, keeping duplicate imaging efforts, and therefore disk access, to a
minimum.

Given that we are addressing forensic acquisition here, we will
concentrate all our efforts on obtaining the entire disk, even if it means
multiple runs. The following examples will be used to illustrate how the most
important options to ddrescue work for the forensic examiner. We will
concentrate on detailing the imaging log used by ddrescue so that the user can
see what is going on with the tool, and how it operates.

Let's look at a simple example of using ddrescue on media without
errors, using a 1GB thumb drive. The simplest way to run ddrescue is by
providing the input file, output file and a name for our log file. Note that there
is no “if=" or “of=". In order to get a good look at how the log file works, we'll
interrupt our imaging process halfway through, check the log, and then resume
the imaging.

root@rock:~# ddrescue /dev/sda image.sda.ddr ddrlog.txt
Press Ctrl-C to interrupt
Initial status (read from logfile)

rescued: ©@ B, errsize: @ B, errors: (C]

Current status

rescued: 341312 kB, errsize: ®@ B, current rate: 1835 kB/s
ipos: 341312 kB, errors: o, average rate: 3038 kB/s

opos: 341312 kB
Copying data...
Interrupted by user

Here we used /dev/sda as our input file, wrote the image to
image.sda.ddr, and wrote the log to ddrlog.txt. Note the output shows the
progress of the imaging by default, giving us a running count of the amount of
data copied or “rescued”, along with a count of the number of errors
encountered (in this case zero), and the imaging speed. Iinterrupted this
process with the “ctrl-c” key combo after around 325MB (of 1GB) were copied.

Now lets have a look at our log:

root@rock:~# cat ddrlog.txt

Rescue Logfile. Created by GNU ddrescue version 1.8
current_pos current_status

0x14580200 ?

pos size status

OX00000000 0x14580200 +

0x14580200 0x28852000 ?

Barry J. Grundy 116

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The log shows us the current status of your acquisition'. Lines starting
with a “#’ are comments. There are two sections of note. The first non
comment line shows the current status of the imaging while the second section
(two lines, in this case) shows the status of various blocks of data. The values
are in hexadecimal, and are used by ddrescue to keep track of those areas of
the target device that have marked errors as well those areas that have already
been successfully read and written. The status symbols (taken from the info
page) are as follows:

Character Meaning
? non-tried
* bad area non-trimmed
/ bad area non-split
- bad hardware block(s)
+ finished

In this case we are concerned only with the '?' and the '+' (we'll get to the
others later). Essentially, when the copying process is interrupted, the log is
used to tell ddrescue where the copying left off, and what has already been
copied (or otherwise marked). The first section (status) alone may be sufficient
in this case, since ddrescue need only pickup where it left off, but in the case of
a disk with errors, the block section is required so ddrescue can keep track of
what areas still need to be retried as good data is sought among the bad.

Translated, our log would tell us the following:

current_pos current_status

0x14580200 ?
- The current imaging process is copying (“?”) data at byte
offset 34131200 (0x14580200)

Ppos size status

0x00000000 0x14580200 +

0x14580200 0x28852000 ?
- The data block from offset 0 of size 34131200 bytes
(0x14580200) has been successfully copied (“+”).
- The data block from offset 341312000 (0x14580200) and
679813120 bytes in size (0x28852000) is currently being
copied (“?”).

Note also that the size of our partially copied file matches the size of the block
of data marked “finished” in our log file:

!¢ The ddrescue info page has a very detailed explanation of the log file structure.

Barry J. Grundy 117

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# 1ls -1 image.sda.ddr
-rw-r--r-- 1 root root 341312000 2008-08-22 19:28 image.sda.ddr

We can continue and complete the copy operation now by simply re
invoking the same command. By specifying the same input and output files,
and by providing the log file, we tell ddrescue to continue where it left off:

root@rock:~# cat ddrlog.txt

Rescue Logfile. Created by GNU ddrescue version 1.8
current_pos current_status

0x14580200 ?

pos size status

OX00000000 0x14580200 +

0x14580200 ©0x28852000 ?

The progress indicator starts at the input position (ipos) specified in the
log, and continues from there. When finished, the log shows the fully
completed image in the second section (marked again with a '+").

root@rock:~# ddrescue /dev/sda image.sda.ddr ddrlog.txt

Press Ctrl-C to interrupt
Initial status (read from logfile)

rescued: 341312 kB, errsize: O B, errors: 0]

Current status

rescued: 1021 MB, errsize: O B, current rate: 1703 kB/s
ipos: 1021 MB, errors: o, average rate: 1966 kB/s
opos: 1021 MB

Finished

root@rock:~# cat ddrlog.txt

Rescue Logfile. Created by GNU ddrescue version 1.8
current_pos current_status

Ox3CDD0400 +

pos size status

OXx00000000 O0x3CDD2200 +

root@rock:~# echo "ibase=16;3CDD2200" | bc
1021125120

root@rock:~# 1ls -1 image.sda.ddr
-rw-r--r-- 1 root root 1021125120 2008-08-22 21:09 image.sda.ddr

The above session shows the completed ddrescue command along with
the contents of the log, which shows the status line informing of a completed

Barry J. Grundy 118

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

image, and the block list now with a single entry from offset 0 for a size of
1021125120 bytes (0x3cdd0400). The completed block size matches the size of
our image. Note the bc command to convert the hex value to decimal.

So that provides us an easy overview of ddrescue on a simple acquisition
with one interruption, but no errors.

Bad Sectors - ddrescue

We've introduced two new imaging tools, dc3dd and ddrescue. We've
shown an example of each in a simple acquisition, and now we are going to
have a look at using them to acquire media with errors. In this case we will use
asmall 1.2 GB IDE disk with 15 bad sectors. This is not an artificially created
disk, but a disk with actual errors.

We'll start with ddrescue and then compare with the results of de3dd.
As previously discussed, one of the main reasons we would try to use ddrescue
over regular dd or de3dd, is that we can have it obtain the good data before
trying to read all the bad sectors. This gives us a better chance of acquiring all
of the readable portions of the disk. Recall that with ddrescue, we can make
numerous passes, using the log file to determine what still needs to be read and
added to our acquisition.

The plan:

- Use ddrescue to obtain only the portions of the disk that are “good”.

- Use the ddrescue log to go back at retry the “bad” areas, making 3
attempts at reading each bad sector. This is done without re-reading
the whole disk.

So, using ddrescue, we'll do our first acquisition run, passing an option
that tells it to avoid “splitting” the bad areas, and just reading the good. This
means that instead of breaking the bad areas of the disk into smaller parts,
down to the hardware sector size, ddrescue will simply skip them and mark
them with an asterisk (“*”) in the log file.

We've attached our disk to an EIDE controller, and found that it is
detected as /dev/hdf. Now we run ddrescue:

Barry J. Grundy 119

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# ddrescue -n /dev/hdf image.hdf.ddr ddrloghdf.txt

Press Ctrl-C to interrupt
Initial status (read from logfile)

rescued: 0 B, errsize: ®@ B, errors: 0]

Current status

rescued: 18350 kB, errsize: 0@ B, current rate: 6291 kB/s
ipos: 18350 kB, errors: o, average rate: 6116 kB/s
0opos: 18350 kB

copying data...

The -n option tells ddrescue to not “trim” or retry the error areas. Once
the imaging is complete we get:

root@rock:~# ddrescue -n /dev/hdf image.hdf.ddr ddrloghdf.txt

Press Ctrl-C to interrupt
Initial status (read from logfile)

rescued: 1281 MB, errsize: 61440 B, current rate: 33280 kB/s
ipos: 850771 kB, errors: 15, average rate: 1930 kB/s
0opos: 850771 kB

Finished

Note the amount of data “rescued” is the size of our disk “1281 MB”.
The number of errors is listed as “15” and the size of the error areas is “61440
Bytes”. One interesting note about the total “error size” is that it calculates to
4096 bytes per error (61440/15). If there were 15 bad sectors we would expect
an error size of 7680 bytes (512*15). The difference is a result of “kernel
caching”, where the actual blocks read and written are multiples of the cache
size. Obviously this is not desirable in a forensic acquisition (we want all the
data we can get). We alleviate this issue by using “direct access”, where we
bypass kernel caching. More on this later.

Looking at our resulting log, ddrloghdyf.txt (shortened for readability):

root@rock:~# cat ddrloghdf.txt
Rescue Logfile. Created by GNU ddrescue version 1.8
current_pos current_status
Ox32B5C000 +

pos size status
Ox00000000 Ox32B77000 +
Ox32B77000 Ox00000EEO /
Ox32B77E00 0Ox00000200 -
Ox32B78000 0x00049000 +
0x32BC100O0 OXOOEOOEOL /
Ox32BC1lEOO 0Ox00000200 -
<snip>

0x38684000 OxO0000EOO /
Ox38684E00 0Ox00000200 -
Ox38685000 0x14013000 +

Barry J. Grundy

120

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The first non-comment line of the log indicates that we have a complete
image from byte offset 0 through 850771968 (0x32B5C000). We then have our
areas where errors were detected. The errors in the log of our as-of-yet
incomplete image are in groups of three addresses, each marked with a
different symbol. Using the second set in the above log, we see

0x32B78000 0x00049000 + (finished copying, good data)
0x32BC1000 0x00000E00 / (datain a “bad area” not yet split)
0x32BC1E00 0x00000200 - (blockis marked “bad”)

At this point, I would make one suggestion, from a forensic perspective:
It might be a good idea to save a copy of each log, as it's changed, between
successive runs. The logging done by ddrescue is designed for recovery, not
documenting a forensic acquisition. By saving the log to a different filename
between runs, you will have created a more complete picture of the forensic
image as it goes through the error splitting and re-reading process.

Back to our acquisition - now we need to go back and try and re read the
areas that are marked as “non-split”. We issue essentially the same command,
using the same input and output file, and the same log file. This time we
remove the -n option:

root@rock:~# ddrescue -d -r3 /dev/hdf image.hdf.ddr ddrloghdf.txt

Press Ctrl-C to interrupt
Initial status (read from logfile)

rescued: 1281 MB, errsize: 61440 B, errors: 15

Current status

rescued: 1281 MB, errsize: 39936 B, current rate: 2560 B/s
ipos: 855198 kB, errors: 19, average rate: 4300 B/s

0opos: 855198 kB
splitting error areas...

rescued: 1281 MB, errsize: 7680 B, current rate: 0 B/s
ipos: 946356 kB, errors: 15, average rate: 663 B/s
opos: 946356 kB

Finished

The -r3 option is passed because we want ddrescue to try and re-read
the bad areas 3 times before actually marking them bad. We also pass the -d
option to specify direct access, and avoid the caching issue.

The final results show that we have the same 15 error areas, but they
have been split down to a total error size of 7680 bytes (15 x 512). Note that in
this case, the errors were unrecoverable, even with 3 tries. The log now shows
our completed image, without split areas, but with each bad sector identified:

Barry J. Grundy 121

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# cat ddrloghdf.txt

Rescue Logfile. Created by GNU ddrescue version 1.8
current_pos current_status

0x38684000 +

pos size status

OXOOOOOOLO 0x32B77800 +

O0x32B77800 0Ox00000200 -

<snip>

0x38684000 0Ox00000200 -

0x38684200 0Ox14013E00 +

There are only “finished” areas and “bad” areas left in our log. And the
bad areas are each a single 512 byte sector (size is 0x00000200).

We should also note that our resulting image is already “synchronized”.
The bad areas of the image have been filled with null bytes. One interesting
feature of ddrescue is the ability to “fill” the image bad areas with a character of
your choice. This can be useful in an exam to differentiate between zero'd
sectors copied from the original image, versus bad sectors synchronized during
the acquisition. See info ddrescue for more details.

Bad Sectors —dc3dd

Now we'll have a look at the same imaging job with dc3dd, and have a
look at the result. Let's start with our most common acquisition parameters:

root@rock:~# dc3dd if=/dev/hdf of=image.hdf.dc3dd progress=on hash=md5
hashwindow=32M log=dc3ddloghdf.txt conv=noerror, sync
850884608 bytes (811 M) copied, 757.63 s, 1.1 M/s
dc3dd: reading “/dev/hdf': Input/output error
1661884+0 records in

1661884+0 records out

850884608 bytes (811 M) copied, 758.599 s, 1.1 M/s
851187200 bytes (812 M) copied, 758.908 s, 1.1 M/s
dc3dd: reading “/dev/hdf': Input/output error
1662474+1 records 1in

1662475+0 records out

851187200 bytes (812 M) copied, 759.806 s, 1.1 M/s
851489280 bytes (812 M) copied, 760.118 s, 1.1 M/s
<snip>

2503752+120 records in

2503872+0 records out

1281982464 bytes (1.2 G) copied, 1208.11 s, 1 M/s

With dc3dd, we use the same command we did in our previous example.
Like regular dd, the conv=noerror,sync option tells dc3dd to ignore any errors,
attempt to read past them, and write zeros to the image in order to keep it
“synchronized” with the original. The sync is important because it keeps data

Barry J. Grundy 122

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

structures properly aligned and allows, for example, a file system within the
image to be properly mounted (assuming the damaged areas are not critical).

Note that our output shows 120 records (blocks) read as errors, ignored
and sync'd. Given that each record is 512 bytes (the default block size), the
amount of data lost is 61440 bytes. The same “error size” as our original
ddrescue run. Luckily, recent versions of programs based on dd (including
dc3dd) have a flag that allows for direct access. Again, this direct flag is passed
to avoid kernel caching (in this case, 4096 byte pages).

Re running our dc3dd command with the iflag=direct, we get the
following:

root@rock:~# dc3dd if=/dev/hdf of=image.hdf.dc3dd progress=on hash=md5
hashwindow=32M log=dc3ddloghdf.txt conv=noerror,sync iflag=direct
850884608 bytes (811 M) copied, 757.63 s, 1.1 M/s

dc3dd: reading "/dev/hdf': Input/output error

1661884+0 records in

1661884+0 records out

850884608 bytes (811 M) copied, 758.599 s, 1.1 M/s

851187200 bytes (812 M) copied, 758.908 s, 1.1 M/s

dc3dd: reading “/dev/hdf': Input/output error

1662474+1 records in

1662475+0 records out

851187200 bytes (812 M) copied, 759.806 s, 1.1 M/s

<snip>

946356224 bytes (903 M) copied, 857.745 s, 1.1 M/s

2503857+15 records in

2503872+0 records out

1281982464 bytes (1.2 G) copied, 1160.53 s, 1.1 M/s

We've ended up with essentially the same result as our ddrescue
acquisition. We now have 15 errors of 512 bytes. The iflag option is new to the
dd code, upon which dc3dd is based. Note that this is one reason I elected to
cover dc3dd rather than dcfldd"’. As a result of the fact that dcfldd is a “fork” of
dd code, it does not include a provision for a “direct” flag. One final option you
might consider passing when dealing with errors and dc3dd is the
errors=group option. This will suppress multiple lines of error output for
consecutive errors, giving a much smaller log file in those cases where large
numbers of consecutive sectors are marked as bad.

For the curious among you, the hashes for the ddrescue acquisition and
the dc3dd acquisition do match.

So, what's the difference?

7 Note that you can still do direct I/O with dcfldd by accessing the target device through
/deviraw.

Barry J. Grundy 123

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Bad Sector Acquisition - Conclusions

We acquired an IDE disk with what appears to be 15 bad sectors using
two different tools. In this case, we arrived at the same result. So, asking the
question again, what's the difference between the tools, and why select one
over the other?

dc3dd is primarily a forensic imaging tool. It is designed specifically for
acquiring images for examination. It's strength is in allowing a forensic analyst
to control the output of the acquisition. It provides for very granular control
over authentication, splitting, and forensic logging. It does handle errors, as we
saw in the preceding section, but it is not specifically designed with a recovery
algorithm in mind - it just reads from start to finish.

ddrescue is primarily a recovery tool. It is designed specifically for
rescuing data from failing or damaged media. It's strength is in it's ability to
acquire the maximum amount of data from damaged media without simply
“grinding” through an already damaged disk. The logging, while not
particularly “friendly”, is geared toward directing successive runs at the data,
not forensic documentation. If you are looking to attempt to acquire the data
found within “bad sectors”, you have a much better shot at it with ddrescue.

While the results obtained in these examples do little to highlight the
differences in the tools, other than the interface, keep in mind that every piece
of media that exhibits errors is different. The degree of the error is never
apparent. As such, your mileage with each tool will vary greatly.

One possible approach to this problem, if you prefer using acquisition
tools designed for forensics (like dc3dd or dcfldd) , would be to continue using
your tool of choice, but without the conv=noerror option. Instead, let the
acquisition fail if an error is found. You can then move to a tool like ddrescue
to safely acquire whatever data is recoverable, with a chance at getting more
than would otherwise be possible. Just keep in mind that if a disk is going bad,
you may only have one shot at acquiring it.

Barry J. Grundy 124

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

LIBEWEF - Working with Expert Witness Files

One of the more ubiquitous forensic image formats found in the
computer forensic world is the Expert Witness or “EWF” format. A number of
popular GUI tools provide images by default in this format, and there are many
tools that can read, convert or work with these images.

We will explore a set of tools here, belonging to the libewf project, that
provide the ability to create, view, convert and work with expert witness
evidence containers. We cover libewf before the other advanced forensic tools
because it needs to be installed firstin order to supply the required libraries to
our other forensic tools for supporting these image formats . The libewf tools
and detailed project information can be found at:

https://www.uitwisselplatform.nl/projects/libewf/

Download the most current version and extract the contents of the
“tarball”. Note we are using version 20080501 in this document:

root@rock:~# tar xzvf libewf-20080501.tar.gz
libewf-20080501/

libewf-20080501/Makefile.in
libewf-20080501/COPYING
libewf-20080501/depcomp
libewf-20080501/1tmain.sh
libewf-20080501/compile
libewf-20080501/Changelog
libewf-20080501/INSTALL

<continues>

Installation of libewf follows the same routine we used to previously
install dec3dd. As always, read the “INSTALL” file in the extracted directory to
ensure the package uses this common method. Recall the commands we use
are:

./configure
make
make install

The first command configures the build environment, the second

command calls the compiler and builds the tools, and the third command
installs the tools (and libraries) to the proper locations.

Barry J. Grundy 125

https://www.uitwisselplatform.nl/projects/libewf/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# cd libewf-20080501

root@rock:~/libewf-20080501# ./configure

checking for a BSD-compatible install... /usr/bin/ginstall -c
checking whether build environment is sane... yes

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking build system type... 1686-pc-linux-gnu

<continues>

Again, assuming no errors, we type make and watch as the compiler does its
thing:

root@rock:~/1libewf-20080501# make

Making all in libewf

make[1]: Entering directory “/root/Tools/libewf-20080501/1ibewf"'

make all-am

make[2]: Entering directory "/root/Tools/libewf-20080501/1ibewf"

if /bin/sh ../libtool --tag=CC --mode=compile gcc -DHAVE_CONFIG_H -I.
-I. -I. -I../include -g -02 -wall -MT ewf_compress.lo -MD -MP -MF
".deps/ewf_compress.Tpo" -c -o ewf_compress.lo ewf_compress.c; \
<continue>

Our newly compiled tools are placed in the “ewftools” directory. We will
cover the following tools briefly here:

ewfinfo

ewfverify
ewfexport
ewfacquire
ewfacquirestream

Now we use make install to put the commands in the proper path:

root@rock:~/1libewf-20080501# make install

Making all in libewf

make[1]: Entering directory “/root/libewf-20080501/1libewf'
make Making install in common

make[1]: Entering directory "/root/libewf-20080501/common'
make[2]: Entering directory “/root/libewf-20080501/common'
make[2]: Nothing to be done for “install-exec-am'.
make[2]: Nothing to be done for “install-data-am'.
make[2]: Leaving directory "/root/libewf-20080501/common'
make[1]: Leaving directory "/root/libewf-20080501/common'
Making install in libewf

<continue>

Barry J. Grundy 126

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Once the installation is complete we can move straight to using the
tools. Proper paths have already been set, and the libraries required by other
programs to use the support of libewf are available. On some systems, you
may run into an initial problem where calling a tool results in a “library not
found” error. If thatis the case on your particular system, simply run the
command ldconfig and try again.

To start, let's talk about those situations where you've been provided a
set of image files (or file) that were obtained using a popular Windows forensic
tool. There will be times where you would like read the meta-data included
with the images, verify the contents of the images, or export or convert the
images to a bitstream (commonly referred to as “dd”) format. This is where the
libewf tools come in handy. They operate at the Linux command line, don't
require any other special software, license, or dongle and are very fast. We will
use a copy of an NTFS practical exercise image we will use in our upcoming
Sleuthkit exercises. This particular copy is in EWF format. The file can be
obtained from:

http://www.LinuxLEOQ.com/Files/ntfs pract.E01

The first thing we can do is run the ewfinfo command on the image file.
This will return the meta-data from the image file that includes acquisition and
media information. We learn the version of the software that the image was
created with, along with the collection platform, date of acquisition, name of
the examiner that created the image with the description and notes. Have a
look at the output of ewfinfo on our E01 file:

Barry J. Grundy 127

http://www.LinuxLEO.com/Files/ntfs_pract.E01

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# ewfinfo ntfs_pract.E01
ewfinfo 20080501 (libewf 20080501, zlib 1.2.3, libcrypto 0.9.8, libuuid)

Acquiry information

Case number: NTFS_Practical

Description: NTFS_pract

Examiner name: Joe Agent

Evidence number: NTFS_pract

Notes: This is a practice Image (e®1 format)
Acquiry date: 26/06/2007 10:58:13

System date: 26/06/2007 10:58:13

Operating system used: Windows XP
Software version used: 5.04
Password: N/A

Media information

Media type: fixed disk

Media is physical: yes

Amount of sectors: 1024000

Bytes per sector: 512

Media size: 524288000

Error granularity: 64

Compression type: good (fast) compression

GUID: 7b4bd359-960b-e845-93h4-2ae39474fed4
MD5 hash in file: d3c4659e4195c6dfidal3afdbdcOdce8f

Notice that the last line in the output provides us with an MD5 hash of
the data in the file. Don't confuse this with the hash of the file itself. A file in
EWF format stores the original data from the media that was imaged along with
a series of CRC checks and meta-data. The hash of the E01 file will NOT match
the hash of the original media imaged. The hash of the original media and
therefore the data collected is recorded in the EWF file for later verification.

If we are given an EO1 file, or a set of EWF files (E01, E02, etc.), and we
want to simply verify that the data within the file is consistent with the data
collected at the time of imaging, we can use the ewfverify command. This
command re-hashes the data contained within file (disregarding the meta-
data) and compares the hash obtained with the “MD5 hash in file”.

You can see from our output below that the the nifs_pract.E01 file

verifies without error. The hash obtained during the verification matches that
stored within the file:

Barry J. Grundy 128

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~# ewfverify ntfs_pract.E01
ewfverify 20080501 (libewf 20080501, z1lib 1.2.3, libcrypto 0.9.8, libuuid)

Verify started at: Tue Aug 21 10:07:07 2007
This could take a while.

Status: at 3%.
verified 18 MB (19202048 bytes) of total 500 MB (524288000 bytes).
completion in 32 second(s) with 15 MB/s (15887515 bytes/second).
(edited for brevity)
Verify completed at: Tue Aug 21 10:07:10 2007

Read: 500 MB (524288000 bytes) in 3 second(s) with 166 MB/s (174762666
bytes/second).

MD5 hash stored in file: d3c4659e4195c6dflda3afdbdcOdce8f
MD5 hash calculated over data: d3c4659e4195c6dflida3afdbdcOdcesf

ewfverify: SUCCESS

Another useful tool in the libewfarsenal is ewfexport. This tool allows
you to take an EWF file and convert it to a bitstream image file, essentially
removing the meta-data and leaving us with the data.

It is interesting to note that ewfexport actually writes to standard output
by default, making it suitable for piping to other commands. We can use the -t
option to write to a file. Using the ewfexport's ability to write to standard out,
we see that we can actually convert the EO1 file to bitstream and pipe the data
directly to md5sum to obtain the same hash as we did with ewfverify:

root@rock:~# ewfexport ntfs_pract.E01 | md5sum
ewfexport 20080501 (libewf 20080501, zlib 1.2.3, libcrypto 0.9.8, libuuid)

Information for export required, please provide the necessary input
Start export at offset (0 >= value >= 524288000) [0]:
Amount of bytes to export (0 >= value >= 524288000) [524288000]:

Export started at: Tue Aug 21 10:11:26 2007
(edited for brevity)
Status: at 71%.
exported 357 MB (374439936 bytes) of total 500 MB (524288000 bytes).
completion in 1 second(s) with 125 MB/s (131072000 bytes/second).

Export completed at: Tue Aug 21 10:11:29 2007

Written: 500 MB (524288000 bytes) in 3 second(s) with 166 MB/s (174762666
bytes/second).

d3c4659e4195c6dflda3afdbdcOdces8f -

Barry J. Grundy 129

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

The ewfexport command first asks us for some information on what we
want to export form the EWF file (default is start to end). The data is exported
and piped through the md5sum command. The last line of output shows the
expected MD5 hash for the data and the input file is shown as “-”, signifying
that the md5sum command was reading the standard output coming through

the pipe.

If we want to export the EWF file to an bitstream image, we use the -t (for
“target”) option. In the command below, we create the file ntfs_image.dd using
ewfexport and check the MD5 hash:

root@rock:~# ewfexport -t ntfs_image.dd ntfs_pract.EO01
ewfexport 20080501 (libewf 20086501, zlib 1.2.3, libcrypto 0.9.8, libuuid)

Information for export required, please provide the necessary input
Start export at offset (0@ >= value >= 524288000) [0]:
Amount of bytes to export (@ >= value >= 524288000) [524288000]:

Export started at: Tue Aug 21 10:13:51 2007
This could take a while.

Status: at 7%.
exported 39 MB (40927232 bytes) of total 500 MB (524288000 bytes).
completion in 13 second(s) with 35 MB/s (37449142 bytes/second).
(edited for brevity)
Status: at 88%.
exported 444 MB (466386944 bytes) of total 500 MB (524288000 bytes).
completion in 0 second(s) with 125 MB/s (131072000 bytes/second).

Export completed at: Tue Aug 21 10:13:55 2007

Written: 500 MB (524288000 bytes) in 4 second(s) with 125 MB/s (131072000
bytes/second).

root@rock:~# md5sum ntfs_image.dd
d3c4659e4195c6dfldal3afdbdc@dce8f ntfs_image.dd

Here we have written n new file called ntfs_image.dd, a bitstream image
file exported from nifs_pract.EO1. The hash obtained afterward matches the
expected hash from our original EWF file.

Finally, we will have a quick look at the ewfacquire and
ewfacquirestream. These two commands are used to create EWF files that can
be used in other programs. The easiest way to describe how ewfacquire
works is to watch it run. There are a number of options available with the
command. To get a short list, just run the command by itself with no options.
To obtain an image, simply issue the command with the name of the file or

Barry J. Grundy 130

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

physical device you wish to image. The program will prompt you for required
information, to be stored with the data in the EWF format:

root@rock:~# ewfacquire /d

ewfacquire 20080501 (libewf 20080501,

ev/sdb

zlib 1.2.3, libcrypto 0.9.8, libuuid)

Acquiry parameters required, please provide the necessary input
Image path and filename without extension: /root/ntfs_ewf

Case number: 111-222
Description: Removable med
Evidence number: 1

ia (generic thumbdrive)

Examiner name: Barry Grundy

Notes: Seized from subject
Media type (fixed, removab
Volume type (logical, phys
Use compression (none, fas
Use EWF file format (ewf,

le) [fixed]: removable
ical) [physical]: physical
t, best) [none]: fast
smart, ftk, encasel,

encase2,

encase3, encase4,

encase5, encase6, linen5, linen6, ewfx) [encase5]: encaseb

Start to acquire at offset
Amount of bytes to acquire
Evidence segment file size
The amount of sectors to r
8192, 16384, 32768) [64]:

(0
(0
in
ead

>= value >= 524288000)
>= value >= 524288000)
kbytes (2/10) (1440 >=
at once (64, 128, 256,

[0]:

[524288000] :

value >= 2097152) [665600]:
512, 1024, 2048, 4096,

The amount of sectors to be used as error granularity (1 >= value >= 64) [64]:
The amount of retries when a read error occurs (0 >= value >= 255) [2]:

Wipe sectors on read error (mimic EnCase like behavior) (yes,

The following acquiry para
Image path and filename:
Case number:
Description:

Evidence number:
Examiner name:

Notes:

Media type:

Volume type:

Compression used:

EWF file format:

Acquiry start offet:

Amount of bytes to acquire:
Evidence segment file size:

Block size:
Error granularity:
Retries on read error:

Wipe sectors on read error:

Continue acquiry with thes

Acquiry started at: Tue Au
(edited for brevity)

meters were provided:
/root/ntfs_ewf.EOQ1
111-222

no) [yes]:

Removable media (generic thumbdrive)

1

Barry Grundy
Seized from subject
removable
physical

fast

EnCase 5

(0]

524288000
665600 kbytes
64 sectors

64 sectors

2

yes

e values (yes,

g 21 10:21:55 2007

Acquiry completed at: Tue Aug 21 10:22:31 2007

MD5 hash calculated over d

ata:

no) [yes]: yes

d3c4659e4195c6dflda3afdbdcOdce8f

Barry J. Grundy

131

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

In the above command session, user input is shown in bold. In places
where there is no input provided, the defaults are used. Notice that ewfacquire
gives you several options for image formats that can be specified. The file(s)
specified by the user is given an E** extension and placed in the path directed
by the user. Finally, an MD5 hash is provided at the end of the output for
verification.

Last, but not least, ewfacquirestream acts much like ewfacquire, but
allows for data to be gathered via standard input. The most obvious use for this
is taking data passed by a program like netcat.

Recall our “DD over the Wire” exercise. In that exercise, the data was
sent across the network from our SUBJECT computer (booted with a Linux
bootdisk) using dd and netcat (nc) and to our listening netcat process on our
collection box IP address and port:

Subject computer:
root@bootdisk~ # dd if=/dev/sda | nc 192.168.55.20 2525

...Once the data reached the destination collection computer, the
listening netcat process piped the output to the dd command output string,
and the file was written exactly as it came across, as a bitstream image.
Remember that the command on the collection computer must be run first, so
that it is “listening” for the data before the command is run on the subject
computer.

Collection computer:
root@rock:~ # nc -1 -p 2525 | dd of=/mnt/evid/net_image.dd

By using ewfacquirestream, we can create EWF files instead of a
bitstream image. We simply pipe the output stream from netcat to
ewfacquirestream. If we do not wish to have the program use default values,
then we issue the command with options that define how we want the image
made (sectors, hash algorithms, error handling, etc.) and what information we
want stored. The command on the subject machine remains the same. The
command on the collection box would look something like this (utilizing many
of the command defaults):

Barry J. Grundy 132

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Collection computer using ewfacquirestream:

root@rock:~ # nc -1 -p 2525 | ewfacquirestream -C 111-222 -D 'removable
thumb drive' -e 'Barry Grundy' -E '1' -f encase5 -m removable -M physical
-N 'Seized from subject' -t /mnt/evid/net_image

This command takes the output from netcat (nc) and pipes it to

ewfacquirestream.
e the case number is specified with -C

the evidence description is given with -D
the examiner given with -e
evidence number with -E
encaseb format is specified with -f encase5
the media type is given with -m
the volume type is given with -M
notes are provided with -N
the target path and file name is specified with -t /path/file.

No extension is given, and ewfacquirestream automatically appends an
EO01 extension to the resulting file.

To get a complete list of options, look at the man pages, or run the
command with the -h option.

Barry J. Grundy 133

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit

The first of the recovery tools we will cover here is actually not a GUI tool
at all, but rather a collection of command line tools.*®

The Sleuthkit is written by Brian Carrier and maintained at
http://www.sleuthkit.org. Itis partially based on The Coroner’s Toolkit (TCT)
originally written by Dan Farmer and Wietse Venema. The Sleuthkit adds
additional file system support (FAT and NTFS). Additionally, the Sleuthkit
allows you to analyze various file system types regardless of the platform you
are currently working on. The current version, as of this writing is 3.0x. Go to
the “downloads” section of the Sleuthkit website (http://www.sleuthkit.org)
and grab the latest copy. For the sake of simplicity, let’s download the file to
our /root (root user’s home) directory.

Note that with the release of version 3.x, there are a number of very
significant changes to the Sleuthkit over previous versions. Most note worthy,
as of the 2.x series, is the inclusion of direct support for full disk images (rather
than just partitions) and split disk images. Also, there have been a number of
significant changes in new 3.x version, including renamed tools and changes to
the programs that affect the way deleted files are dealt with.

Let's start with a discussion of the tools first. Most of this information is
readily available in the Sleuthkit documentation or on the Sleuthkit website.

The Sleuthkit’s tools are organized by what the author calls a “layer”
approach.

* Media management layer - mmls, mmcat, mmstat
 File system layer — fsstat

» File name layer (“Human Interface”) —fls, ffind

» Meta data (inode) layer - icat, ils, ifind, istat

* Content (data) layer — blkcalc, blkcat, blkls, blkstat

We also have tools that address physical disks and tools that address the
“journals” of some file systems.

* Journal tools —jcat, jls
» disk tools — disk_stat, disk_reset

'8 Note that I have removed the Autopsy section from this version of the guide. Ifind that I do not use Autopsy much at
all. And trying to discuss a tool that you don't use often can be bothersome...especially in a classroom full of
inquisitive students that are often smarter than the instructor.

Barry J. Grundy 134

http://www.sleuthkit.org/
http://www.sleuthkit.org/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Notice that the commands that correspond to the analysis of a given
layer begin with a common letter. For example, the file system command starts
with “fs”, and the inode (meta-data) layer commands start with “i” and so on.

If the “layer” approach referenced above seems a little confusing to you,
you should take the time to read the Sleuthkit's README.txt file. The author
does a fine job of defining and describing these layers and how they fit together
for a forensic analysis. Understanding that the Sleuthkit tools operate at
different layers is extremely important.

It should be noted here that the output of each tool is specifically
tailored to the file system being analyzed. For example, the fsstat command is
used to print file system details. The structure of the output and the
descriptive fields change depending on the target file system. This will become
apparent throughout the exercises.

In addition to the tools already mentioned, there are some
miscellaneous tools included with the Sleuthkit that don't fall into the above
categories:

e sorter — categorizes allocated and unallocated files based on type
(images, executables, etc). Extremely flexible and configurable.

e img cat - allows for the separation of meta-data and original data from
image files (media duplication, not pictures).

e img stat - provides information about a forensic image. The
information it provides is dependent on the image format (aff, ewf, etc.).

e hfind - hash lookup tool. Creates and searches an indexed database.

e sigfind - searches a given file (forensic image, disk, etc.) for a hex
signature at any specified offset (sector boundary).

e mactime - creates a time line of file activity. VERY useful for intrusion
investigations where temporal relationships are critical.

e srch_strings - like standard BSD strings command, but with the ability
to parse different encodings.

Barry J. Grundy 135

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Installation and System Prep

Installation is easy. You can simply un-tar the file then change in to the
resulting directory:

root@rock:~# tar xzvf sleuthkit-3.0.0.tar.gz
sleuthkit-3.0.0/

sleuthkit-3.0.0/aclocal.m4
sleuthkit-3.0.0/CHANGES. txt
sleuthkit-3.0.0/config/

<continues>

root@rock:~# cd sleuthkit-3.0.0
root@rock:~/sleuthkit-3.0.0 #

Take a moment to read the included documentation (README.txtis a
good place to start). We will continue with a short description in this
document, but most of what you need to know is right there.

Compiling the tools has changed significantly as of version 2.50 of the
Sleuthkit. Previously, the programs were compiled with a simple make
command, and libraries that provided a number of features were simply
included with the package. Now, the program is compiled and built
“manually” so support for external libraries (and their versions) is up to the
user. For example, the libewf package (covered earlier), which provides
support for Expert Witness format images must be properly installed before
installing the Sleuthkit if you want support for EnCase format images. This is
why we covered libewf and installed it first.

As with the libewf package, the new versions of the Sleuthkit are
compiled and installed using the same basic set of commands as other
“tarball” source distributions. Inside the directory we extracted above, we use
the commands:

./configure
make
make install

The first step is to “configure” the package for compilation. This is
where support is added for our previously installed libewf package. Note the
output of the command at the end of the configure process in the following
output:

Barry J. Grundy 136

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/sleuthkit-3.0.0 # ./configure

checking for a BSD-compatible install... /usr/bin/ginstall -c
checking whether build environment is sane... yes

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for libewf_open in -lewf... yes

configure: creating ./config.status
config.status: creating Makefile
<continues>

During the configure process you'll note the line (in bold above) that the
Sleuthkit detected the libewf install and will include support, so that the tools
can be used on EWF (.E01) files.

Next, we run the make command to compile the tools.

root@rock:~/sleuthkit-3.0.0 # make

Making all in tsk3

make[1]: Entering directory “/root/sleuthkit-3.0.0/tsk3'

make all-recursive

make[2]: Entering directory “/root/sleuthkit-3.0.0/tsk3'

Making all in base

make[3]: Entering directory “/root/sleuthkit-3.0.0/tsk3/base’

source='md5c.c' object='md5c.lo' libtool=yes \
depfile='.deps/md5c.Plo' tmpdepfile='.deps/md5c.TPlo' \
depmode=gcc3 /bin/sh ../../config/depcomp \

<compiler output>

If you run into any problems, read the INSTALL.txt document. When
the compiling is finished, you will find the Sleuthkit tools located in various
sleuthkit-3.x/tools/* directories. The man pages for each command are located
in the sleuthkit-3.x/man directory.

At this point we are ready to complete the install:

root@rock:~/sleuthkit-3.0.0 # make install

Making install in tsk3

make[1]: Entering directory "/root/sleuthkit-3.0.0/tsk3'
Making install in base

make[2]: Entering directory “/root/sleuthkit-3.0.0/tsk3/base’
make[3]: Entering directory “/root/sleuthkit-3.0.0/tsk3/base’
make[3]: Nothing to be done for “install-exec-am'.

make[3]: Nothing to be done for “install-data-am'.

make[3]: Leaving directory "/root/sleuthkit-3.0.0/tsk3/base’
make[2]: Leaving directory “/root/sleuthkit-3.0.0/tsk3/base’
Making install in img

<continues>

Barry J. Grundy 137

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

This places the Sleuthkit commands in /usr/local/bin/ and the man
(manual pages for each command) in /usr/local/man. Various header file and
libraries used by the system are also copied to the proper locations.

Sleuthkit Exercises

Since the very first versions of this document, one of the most
commonly requested additions has always been a more complete introduction
to the Sleuthkit tools. I have been asked many, many times to add more
exercises that include more of the tools and some of the more common file
systems encountered by the average investigator. So, to that end, ['ve added a
couple of new comprehensive exercises and a more thorough explanation of
the available tools.

We are going to start with a quick sample analysis using just a few of the
Sleuthkit command line tools. Like all of the other exercises in this document,
I'd suggest you follow along if you can. Using these commands on your own is
the only way to really learn the techniques. Read the included man pages and
play with the options to obtain other output. The image files used in the
following examples are available for download. Get your hands on the
keyboard and follow along.

Barry J. Grundy 138

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #1 — Deleted File Identification and Recovery

Let's start our tour of Sleuthkit with one of the tools introduced in
version 2 of the Sleuthkit, img_stat. This command is used to display the
forensic image attributes including the type of image, and the format.

If we run the command against our able2.dd image, we see the following
output. Note that we are running the command from within the
/root/able2 directory, so there's no need to provide the full path to the target
image.

root@rock:~# cd able2
root@rock:~/able2 # img_stat able2.dd
IMAGE FILE INFORMATION

Image Type: raw

Size in bytes: 345830400
root@rock:~/able2 #

Since this is just a dd image, we see that the “Image Type” is listed as
“raw”, and we are given the size of the image in bytes.

Very quickly, let's split our able2.dd file and see what the output from
img stat looks like when run on split files. We are going to split the original
image file /root/able2/able2.dd into 100MB chunks (note that we use the -d
option to get our splits numbered), then run img_stat on the splits:

root@rock:~/able2# split -d -b 100m able2.dd able2.split.
root@rock:~/able2 # 1s -1lh able2.split.0*

-rw-r--r-- 1 root root 100M Mar 21 15:11 able2.split.00
-rw-r--r-- 1 root root 100M Mar 21 15:11 able2.split.01
-rw-r--r-- 1 root root 100M Mar 21 15:11 able2.split.02
-rw-r--r-- 1 root root 30M Mar 21 15:12 able2.split.03
root@rock:~/able2 # img_stat able2.split.0*

IMAGE FILE INFORMATION

Image Type: split

Size in bytes: 345830400

Split Information:

able2.split.00 (0 to 104857599)
able2.split.01 (104857600 to 209715199)
able2.split.02 (209715200 to 314572799)
able2.split.03 (314572800 to 345830399)

Barry J. Grundy 139

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

the byte offsets of each split.

So, in the first command above, we split the able2.dd file. We then do an
Is -1h to see the resulting splits and their sizes. Finally, the Sleuthkit's img_stat
command is executed, and we see that it recognizes the split files and gives us

Now let’s have a look at a couple of the file system and file name layer
tools, fsstat and fls. We will run them against our able2 images. Keep in mind
that in older versions of Sleuthkit, we needed to carve the partitions out of the
image to use with the tools. As of version 2.00, Sleuthkit tools have been able to
look directly at the whole disk image. An offset must still be passed to the tool
in order to for it to see the target file system.

We have already used sfdisk to determine partition offsets within a dd
image. Sleuthkit also comes with a tool, mmls, that does much the same
thing, providing access to the partition table within an image, and giving the
partition offsets in sector units. As with many of the Sleuthkit tools, there is a
certain amount of “intelligence” built into the command. If you do not pass
the proper image type (with the -i option) or the proper partition type (for
example, specifying that this is a dos partition table with the -t option),
Sleuthkit will attempt to guess the proper parameters. For the sake of
correctness, we will use the options -i and -t to pass the image type (either split
or raw) and the type partition table.

root@rock:~/able2 # mmls -i split -t dos able2.split.o*
DOS Partition Table
Sector: 0
Units are in 512-byte sectors

00:
01:
02:
03:
04:
05:

Start

0000000
0000000001
000000057
0000010260
0000112860
0000178695

End

000000000600
0000000056
0000010259
0000112859
0000178694
0000675449

Length

0000000001
0000000056
0000010203
0000102600
0000065835
0000496755

Description

Primary Table (#0)
Unallocated

Linux (0x83)

Linux (0x83)

Linux Swap / Solaris
Linux (0x83)

Barry J. Grundy

For the sake of this analysis, the information we are looking for is located
on the root partition (file system) of our image. Remember from our previous
analysis of the able2 dd image that the root (“/”) file system is located on the
second partition (able2.part2.dd in the previous exercise). Looking at our
mmls output, we can see that that partition starts at sector 10260 (actually
numbered “03” in the mmls output, or slot 00:01).

So, we run the Sleuthkit fsstat command with -0 10260 to gather file
system information at that offset.

140

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/able2 # fsstat -o 10260 able2.dd
FILE SYSTEM INFORMATION

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064dal8cOc4

Last Written at: Sun Aug 10 14:50:03 2003
Last Checked at: Tue Feb 11 00:20:09 1997

Last Mounted at: Thu Feb 13 02:33:02 1997
Unmounted Improperly
Last mounted on:

Source 0S: Linux

Dynamic Structure

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super,

METADATA INFORMATION
Inode Range: 1 - 12881
Root Directory: 2

Free Inodes: 5807

CONTENT INFORMATION

Block Range: 0 - 51299

Block Size: 1024

Reserved Blocks Before Block Groups: 1
<continues>

The fsstat command provides type specific information about the file
system located in a device or forensic image. As previously noted, we ran the
fsstat command above with the option -0 10260. This specifies that we want
information from the file system residing on the partition that starts at sector
offset 10260.

We can get more information using the fls command. fls lists the file
names and directories contained in a file system, or in a directory, if the meta-
data identifier for a particular directory is passed. The output can be adjusted
with a number of options, to include gathering information about deleted files.
If you type “fIs” on its own, you will see the available options (view the man
page for a more complete explanation).

If you run the fls command with no options (other than the -0 option to

specify the file system), then by default it will run on the “root” directory (inode
2 on and EXT file system, MFT entry 5 on NTFS, etc.).

Barry J. Grundy 141

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

In other words, on an EXT file system, running:

root@rock:~/able2 # fls -o 10260 able2.dd

And:
root@rock:~/able2 # fls -o 10260 able2.dd 2

...will result in the same output. In the second command, the “2” passed
at the end of the command means “root directory”, which is run by default in
the first command.

So, in the following command, we run fls and only pass -0 10260. This
results in a listing of the contents of the root directory:

root@rock:~/able2 # fls -o 10260 able2.dd
d/d 11: lost+found
d/d 3681: boot

d/d 7361: usr

d/d 3682: proc

d/d 7362: var

d/d 5521: tmp

d/d 7363: dev

d/d 9201: etc

d/d 1843: bin

d/d 1844: home

d/d 7368: 1ib

d/d 7369: mnt

d/d 7370: opt

d/d 1848: root

d/d 1849: sbhin

r/r 1042: .bash_history
d/d 11105: .001

d/d 12881: $0rphanFiles

There are several points we want to take note of before we continue.
Let's take a few lines of output and describe what the tool is telling us. Have a
look at the last three lines from the above fls command.

;}} 1042: .bash_history
d/d 11105: .001
d/d 12881: $0rphanFiles

Each line of output starts with two characters separated by a slash. This
field indicates the file type as described by the file's directory entry, and the
file's meta-data (in this case, the inode). For example, the first file listed in the
snippet above, .bash_history, is identified as a regular file in both the file's

Barry J. Grundy 142

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

directory and inode entry. This is noted by the r/r designation. Conversely, the
following two entries (.001 and $OrphankFiles) are identified as directories.

The next field is the meta-data entry number (inode, MFT entry, etc.)
followed by the filename. In the case of the file .bash_history the inode is listed
as 1042.

Note that the last line of the output, $OrphankFiles is a virtual folder,
created by the Sleuthkit and assigned a virtual inode (a new feature for
Sleuthkit 3.00). This folder contains virtual file entries that represent
unallocated meta data entries where there are no corresponding file names.
These are commonly referred to as “orphan files”, which can be accessed by
specifying the meta data address, but not through any file name path. We will
cover this in more detail in a later section.

We can continue to run fls on directory entries to dig deeper into the file
system structure (or use -r for a recursive listing). By passing the meta data
entry number of a directory, we can view it's contents. Read man fls for a look
at some useful features. For example, have a look at the .001 directory in the
listing above. This is an unusual directory and would cause some suspicion. It
is hidden (starts with a “.”), and no such directory is common in the root of the
file system. So, to see the contents of the .001 directory, we would pass its
inode to fls:

root@rock:~/able2 # fls -o 10260 able2.dd 11105
r/r 2138: lolit pics.tar.gz
r/r 11107: lolitazi

r/r 11108: lolitazi10

r/r 11109: lolitaziil

r/r 11110: lolitazil2

r/r 11111: lolitazi13

r/r 11112: lolitaz?

r/r 11113: lolitaz3

r/r 11114: lolitaz4

r/r 11115: lolitaz5b

r/r 11116: lolitaz6

r/r 11117: lolitaz7

r/r 11118: lolitaz8

r/r 11119: lolitaz9

The contents of the directory are listed. We will cover commands to help
view and analyze the individual files later on.

fls can also be useful for uncovering deleted files. By default, fls will

show both allocated and unallocated files. We can change this behavior by
passing other options. For example, if we wanted to see only deleted entires

Barry J. Grundy 143

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

that are listed as files (rather than directories), and we want the listing to be
recursive, we could use the following command:

root@rock ~/able2 # fls -o 10260 -Frd able2.dd

r/r * 11120(realloc): var/lib/slocate/slocate.db.tmp
r/r * 10063: var/log/xferlog.5

r/r * 10063: var/lock/makewhatis.lock

r/r * 6613: var/run/shutdown.pid

r/r * 1046: var/tmp/rpm-tmp.64655

r/r * 6609(realloc): var/catman/catl/rdate.1.gz
r/r * 6613: var/catman/catl/rdate.1.gz

r/r * 6616: tmp/logrot2v6Qi1J

r/r * 2139: dev/ttYz0/1rkn.tgz

d/r * 10071(realloc): dev/ttYz0/1rk3

r/r * 6572(realloc): etc/X11/fs/config-

1/r * 1041(realloc): etc/rc.d/rc0@.d/K83ypbind
1/r * 1042(realloc): etc/rc.d/rc1.d/K83ypbind
1/r * 6583(realloc): etc/rc.d/rc2.d/K83ypbind
1/r * 6584(realloc): etc/rc.d/rc4.d/K83ypbind
1/r * 1044: etc/rc.d/rc5.d/K83ypbind

1/r * 6585(realloc): etc/rc.d/rc6.d/K83ypbind
r/r * 1044: etc/rc.d/rc.firewall~

r/r * 6544(realloc): etc/pam.d/passwd-

r/r * 10055(realloc): etc/mtab. tmp

r/r * 10047(realloc): etc/mtab~

r/- * 0: etc/.inetd.conf.swx

r/r * 2138(realloc): root/lolit_pics.tar.gz
r/r * 2139: root/1lrkn.tgz

r/r * 1055: $0rphanFiles/OrphanFile-1055

r/r * 1056: $0rphanFiles/OrphanFile-1056

r/r * 1057: $0rphanFiles/OrphanFile-1057

r/r * 2141: $0rphanFiles/OrphanFile-2141

r/r * 2142: $0rphanFiles/OrphanFile-2142

r/r * 2143: $0rphanFiles/OrphanFile-2143
<continues>

In the above command, we run the fls command against the partition in

able2.dd starting at sector offset 10260 (-0 10260), showing only file entries
(-F), descending into directories (-r), and displaying deleted entries (-d).

Notice that all of the files listed have an asterisk (¥) before the inode.

This indicates the file is deleted, which we expect in the above output since we
specified the -d option to fls. We are then presented with the meta-data entry
number (inode, MFT entry, etc.) followed by the filename.

Have a look at the line of output for inode number 2138

(root/lolit_pics.tar.gz). The inode is followed by “(realloc)”. Keep in mind that
fls describes the file namelayer. The “realloc” means that the file name listed is
marked as unallocated, even though the meta data entry (2138) is marked as

Barry J. Grundy 144

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

allocated. In other words...the inode from our deleted file may have been
“reallocated” to a new file.

According to Brian Carrier:

“The difference comes about because there is a file name layer and a
metadata layer. Every file has an entry in both layers and each entry has
its own allocation status.

If a file is marked as "deleted" then this means that both the file name
and metadata entries are marked as unallocated. If a file is marked as
"realloc” then this means that its file name is unallocated and its
metadata is allocated.

The latter occurs if:
- The file was renamed and a new file name entry was created for
the
file, but the metadata stayed the same.
- NTFS resorted the names and the old copies of the name will be
"unallocated" even though the file still exists.
- The file was deleted, but the metadata has been reallocated to a
new file.

In the first two cases, the metadata correctly corresponds to the
deleted file name. In the last case, the metadata may not correspond
to the name because it may instead correspond to a new file.”

In the case of inode 2138, it looks as though the “realloc” was caused by
the file being moved to the directory .001 (see the fls listing of .001 on the
previous page). This causes it to be deleted from it's current directory entry
(root/lolit_pics.tar.gz) and a new file name created (.001/lolit_pics.tar.gz). The
inode and the data blocks that it points to remain unchanged and in “allocated
status”, but it has been “reallocated” to the new name.

Let's continue our analysis exercise using a couple of meta data (inode)
layer tools included with the Sleuthkit. In a Linux EXT type file system, an
inode has a unique number and is assigned to a file. The number corresponds
to the inode table, allocated when a partition is formatted. The inode contains
all the meta data available for a file, including the modified/accessed/changed
(mac) times and a list of all the data blocks allocated to that file.

If you look at the output of our last fls command, you will see a deleted
file called Irkn.tgzlocated in the /root directory (the last file in the output of our
fls command, before the list of orphan files -recall that the asterisk indicates it
is deleted):

Barry J. Grundy 145

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

r/r * 2139: root/1lrkn.tgz

The inode displayed by fls for this file is 2139. This same inode also
points to another deleted file in /dev earlier in the output (same file, different
location). We can find all the file names associated with a particular meta data
entry by using the ffind command:

root@rock:~/able2 # ffind -o 10260 able2.dd 2139
* /dev/ttYZ0/1rkn.tgz
* /root/1lrkn.tgz

Here we see that there are two file names associated with inode 2139,
and both are deleted, as noted again by the asterisk.

Continuing on, we are going to use istat. Remember that fsstat took a
file system as an argument and reported statistics about that file system. istat
does the same thing; only it works on a specified inode or meta data entry.

We use istat to gather information about inode 2139:

root@rock:~/able2 # istat -o 10260 able2.dd 2139

inode: 2139
Not Allocated
Group: 1

Generation Id: 3534950564
uid / gid: @ / ©

mode: rrw-r--r--

size: 3639016

num of links: 0

Inode Times:

Accessed: Sun Aug 10 00:18:38 2003
File Modified: Sun Aug 10 00:08:32 2003
Inode Modified: Sun Aug 10 00:29:58 2003
Deleted: Sun Aug 10 00:29:58 2003

Direct Blocks:

22811 22812 22813 22814 22815 22816 22817 22818
22819 22820 22821 22822 22824 22825 22826 22827
<snip>...

32233 32234

This reads the inode statistics (istat), on the file system located in the
able2.dd image in the partition at sector offset 10260 (-0 10260), from inode
2139 found in our fls command. There is a large amount of output here,
showing all the inode information and the file system blocks (“Direct Blocks”)

Barry J. Grundy 146

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

that contain all of the file’s data. We can either pipe the output of istat to a file
for logging, or we can send it to less for viewing.

Keep in mind that the Sleuthkit supports a number of different file
systems. istat (along with many of the Sleuthkit commands) will work on more
than just an EXT file system. The descriptive output will change to match the
file system istat is being used on. We will see more of this a little later. You can
see the supported file systems by running istat with “-f list”.

root@rock:~/able2 # istat -f list
Supported file system types:
ntfs (NTFS)
fat (FAT (Auto Detection))
ext (ExtX (Auto Detection))
1s09660 (IS09660 CD)
ufs (UFS (Auto Detection))
raw (Raw Data)
swap (Swap Space)
fatl2 (FAT12)
fatl16 (FAT16)
fat32 (FAT32)
ext2 (Ext2)
ext3 (Ext3)
ufsl (UFS1)
ufs2 (UFS2)

We now have the name of a deleted file of interest (from fls) and the
inode information, including where the data is stored (from istat).

Now we are going to use the icat command from the Sleuthkit to grab
the actual data contained in the data blocks referenced from the inode. icat
also takes the “inode” as an argument and reads the content of the data blocks
that are assigned to that inode, sending it to standard output. Remember, this
is a deleted file that we are recovering here.

We are going to send the contents of the data blocks assigned to inode
21391o afile for closer examination.

root@rock:~/able2 # icat -o 10260 able2.dd 2139 > /root/lrkn.tgz.2139

This runs the icat command on the file system in our able2.dd image at
sector offset 10260 (-0 10260) and streams the contents of the data blocks
associated with inode 2139 to the file /root/lrkn.tgz.2139. The filename is
arbitrary; I simply took the name of the file from fls and appended the inode
number to indicate that it was recovered. Normally this output should be
directed to some results or specified evidence directory.

Barry J. Grundy 147

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Now that we have what we hope is a recovered file, what do we do with
it? Look at the resulting file with the file command:

root@rock:~/able2 # file /root/lrkn.tgz.2139
/root/1lrkn.tgz.2139: gzip compressed data, was "lrkn.tar", from Unix

Have a look at the contents of the recovered archive (pipe the output
through less...it’s long). Remember that the “t” option to the tar command
lists the contents of the archive.

Don’t just haphazardly extract an archive without knowing what it will
write, or especially where"

root@rock:~/able2 # tar tzvf /root/lrkn.tgz.2139 | less
drwxr-xr-x 1p/1lp @ 1998-10-01 18:48:18 1rk3/
-rwxr-xr-x 1p/1p 742 1998-06-27 11:30:45 1rk3/1
-rw-r--r-- 1p/1p 716 1996-11-02 16:38:43 1rk3/MCONFIG
-rw-r--r-- 1p/1p 6833 1998-10-03 05:02:15 1lrk3/Makefile
-rw-r--r-- 1p/1lp 6364 1996-12-27 22:01:43 1rk3/README
-rwxr-xr-x 1p/1lp 90 1998-06-27 12:53:45 1rk3/RUN
drwxr-xr-x 1p/1p 0 1998-10-01 18:08:50 1lrk3/bin/
<continues>

We have not yet extracted the archive, we've just listed its contents.
Notice that there is a README file included in the archive. If we are curious
about the contents of the archive, perhaps reading the README file would be a
good idea, yes? Rather that extract the entire contents of the archive, we will go
for just the README using the following tar command:

root@rock:~/able2 # tar xzvfO /root/lrkn.tgz.2139 1lrk3/README > /root/README.2139
1rk3/README

The difference with this tar command is that we specify that we want the
output sent to stdout (“O” [capital letter “oh”]) so we can redirect it. We also
specify the name of the file that we want extracted from the archive
(Irk3/README). This is all redirected to a new file called /root/README.2139.

If you read that file (use less), you will find that we have uncovered a
“rootkit”, full of programs used to hide a hacker’s activity.

Briefly, let's look at a different type of file recovered by icat. The concept
is the same, but instead of extracting a file, you can stream it's contents to

19 et’s face it, it would be BAD to have an archive that contains a bunch of Trojans and other nasties (evil kernel
source or libraries, etc.) overwrite those on your system. Be extremely careful with archives.

Barry J. Grundy 148

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

stdout for viewing. Recall our previous directory listing of the .001 directory at
inode 11105:

root@rock:~/able2 # fls -o 10260 able2.dd 11105
r/r 2138: lolit_pics.tar.gz

r/r 11107: lolitazi

r/r 11108: lolitazi1@

<continues>

We can determine the contents of the (allocated) file with inode 11108,
for example, by using icat to stream the inode's data blocks through a pipe to

the file command. We use the “-” to indicate that file is getting its input from
the pipe:

root@rock:~/able2 # icat -o 10260 able2.dd 11108 | file -
/dev/stdin: JPEG image data, JFIF standard 1.02

The output shows that we are dealing with a jpeg image. So we decide to
use the display command to show us the contents:

root@rock:~/able2 # icat -o 10260 able2.dd 11108 | display

This results in an image opening in a window, assuming you are running
in a graphical environment and have ImageMagick installed, which provides
the display utility.

Barry J. Grundy 149

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #2 — Physical String Search & Allocation Status

This is another section added in response to a number of questions I've
received both in classes and via e-mail. In our original floppy disk image
analysis, one of the exercises we completed was a physical search of the image
for a set of strings. Once the strings were located, we viewed them with the xxd
utility. That's just half the story. In the vast majority of real examinations you
are going to want to find out (if possible) what file that string belonged to and
whether or not that file is allocated or unallocated. That is the purpose of this
exercise.

This is a far more advanced exercise, but the question is asked enough
that I thought it was worth covering here. Irealize this is a beginner level
document, but these are important concepts. Even if you rely on GUI tools for
your day to day forensic analysis, you should understand exactly how your
tools calculate and display their findings. In some ways the Sleuthkit forces
you to understand these concepts (or you don't get very far).

This time we are going to do a search for a single string in our Linux disk
image able2.dd. Based on some information received elsewhere, we decide to
search our image for the keyword “Cybernetik”. Change to the directory
containing our able2.dd image and use grep to search for the string:

root@rock:~/able2 # grep -abi Cybernetik able2.dd
10561603: * updated by Cybernetik for linux rootkit
55306929:Cybernetik proudly presents...

55312943:Email: cybernetik@nym.alias.net
55312975:Finger: cybernetik@nym.alias.net

Recall that our grep command is taking the file able2.dd treatingita s a
text file (-a) and searching for the string “Cybernetik”. The search is case-
insensitive (-i) and will output the byte offset of any matches (-b).

Our output shows that the first match comes at byte offset 10561603.
Like we did in our first string search exercise, we are going to quickly view the
match using our hex viewer xxd and providing the offset given by grep. We will
also use the head command to indicate that we only want to see a specific
number of lines, in this case just 5 (-n 5). We just want to get a quick look at the
context of the match before proceeding.

Barry J. Grundy 150

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux
root@rock:~/able2 # xxd -s 10561603 able2.dd | head -n 5

0al12843: 202a 0975 7064 6174 6564 2062 7920 4379 *.updated by Cy
0al12853: 6265 726e 6574 696b 2066 6f72 206c 696e bernetik for 1lin
0al2863: 7578 2072 6f6f 746b 6974 0a20 2a2f Gada ux rootkit. */..
0a12873: 2369 6e63 6¢75 6465 203c 7379 732f 7479 #include <sys/ty
0al12883: 7065 732e 683e 0a23 696e 636C 7564 6520 pes.h>.#include

We also have to keep in mind that what we have found is the offset to the
match in the entire disk, not in a specific file system. In order to use the
Sleuthkit tools, we need to have a file system to target.

Let's figure out which partition (and file system) the match is in. Use be
to calculate which sector of the image and therefore the original disk the
keyword is in. Each sector is 512 bytes, so dividing the byte offset by 512 tells
us which sector:

root@rock:~/able2 # echo "10561603/512" | bc
20628

Able2.dd (entire image)

Keyword Hit

#1

10561603
10561603/512=20628 (sector offset)

The Sleuthkit's mmls command gives us the offset to each partition in
the image (you could also use sfdisk):

root@rock:~/able2 # mmls able2.dd
DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 00000000006 00000000006 0000000001 Primary Table (#0)
01: ----- 0000000001 0000000056 0000000056 Unallocated
02: 00:00 0000000657 0000010259 0000010203 Linux (0x83)
03: 00:01 0000010260 0000112859 0000102600 Linux (0x83)
04: 00:02 0000112860 0000178694 0000065835 Linux Swap /
Solaris x86 (0x82)
05: 00:03 0000178695 0000675449 0000496755 Linux (0x83)

Barry J. Grundy

151

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

From the output of mmls above, we see that our calculated sector,
20628, falls in the second partition (between 10260 and 112859). The offset to
our file system for the Sleuthkit commands will be 10260.

The problem is that the offset that we have is the keyword's offset in the
disk image, not in the file system (which is what the volume data block is
associated with). So we have to calculate the offset to the file AND the offset to
the partition that contains the file.

Able2.dd (entire image)

Partition #2 (slot 00:01)

Keyword Hit

#2
Partition offset
10260 sectors*512=5253120
| #1
| 10561603
10561603/512=20628 (sector offset)

The difference between the two is the volume offset of the keyword hit,
instead of the physical disk (or image) offset.

Able2.dd (entire image)

Partition #2 (slot 00:01)

. Keyword Hit
Offset to keyword in the volumey

10561603-5253120=5308483 |

Partition offset
10260 sectors*512=5253120

| #1
| 10561603
10561603/512=20628 (sector offset)

Now we know the offset to the keyword within the actual volume, rather
than the entire image. Let's find out what inode (meta-data unit) points to the
volume data block at that offset. To find which inode this belongs to, we first
have to calculate the volume data block address. Look at the Sleuthkit's fsstat
output to see the number of bytes per block. We need to run fsstat on the file
system at sector offset 10260:

Barry J. Grundy 152

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/able2 # fsstat -o 10260 -f ext able2.dd
FILE SYSTEM INFORMATION

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064dal18cOc4

Last Written at: Sun Aug 10 14:50:03 2003
Last Checked at: Tue Feb 11 00:20:09 1997

Last Mounted at: Thu Feb 13 02:33:02 1997
Unmounted Improperly
Last mounted on:

Source 0S: Linux

Dynamic Structure

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super,

METADATA INFORMATION
Inode Range: 1 - 12881
Root Directory: 2

Free Inodes: 5807

CONTENT INFORMATION

Block Range: 0 - 51299

Block Size: 1024

Reserved Blocks Before Block Groups: 1
Free Blocks: 9512

<continues>

The fsstat output shows us (highlighted in bold) that the data blocks
within the volume are 1024 bytes each. If we divide the volume offset by 1024,
we identify the data block that holds the keyword hit.

Able2.dd (entire image)

Partition #2 (slot 00:01)

Keyword Hit

vol. offset / vol. block size = vol. block address
(5308483 /1024 = 5184)

fsstat output shows each
volume data block = 1024 bytes

Barry J. Grundy 153

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Here are our calculations, summarized:

e offset to the string in the disk image (from our grep output):
10561603

e offset to the partition that contains the file: 10260 sectors * 512
bytes per sector

e offset to the string in the partition is the difference between the
two above numbers.

e the data block is the offset in the file system divided by the block
size, (data unit size) 1024, from our fsstat output.

Able2.dd (entire image)

Keyword Hit Partition #2 (slot 00:01)

Offset to -;cy'.'r-.'or'd in the volumey
10561603-5253120=5308483 }

#4 Offset in volume = 5308483
data blocksize = 1024 (from fsstat)

5308483/1024 = 5184

Partition offset
10260 sectors*512=5253120

#1

| 10561603
10561603/512=20628 (sector offset)

In short, our calculation, taking into account all the illustrations above,
is simply:

root@rock:~/able2 # echo "(10561603-(10260*512))/1024" | bc
5184

Note that we use parentheses to group our calculations. We find the
byte offset to the file system first (10260*512), subtract that from the offset to
the string (10561603) and then divide the whole thing by the data unit size
(1024) obtained from fsstat. This (5184) is our data unit (not the inode!) that
contains the string we found with grep. Very quickly, we can ascertain its
allocation status with the Sleuthkit command blkstat:

root@rock:~/able2 # blkstat -o 10260 -f ext able2.dd 5184
Fragment: 5184

Not Allocated

Group: O

So blkstat tells us that our key word search for the string “ Cybernetik”
resulted in a match in an unallocated block. Now we use ifind to tell us which
inode (meta-data structure) points to data block 5184 in the second partition of
our image:

Barry J. Grundy 154

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/able2 # ifind -o 10260 -f ext -d 5184 able2.dd
10090

Excellent! The inode that holds the keyword match is 10090. Now we
use istat to give us the statistics of that inode:

root@rock:~/able2 # istat -o 10260 -f ext able2.dd 10090
inode: 10090

Not Allocated

Group: 5

Generation Id: 3534950782

uid / gid: 4 / 7

mode: -rw-r--r--

size: 3591

num of links: ©

Inode Times:

Accessed: Sun Aug 10 00:18:36 2003
File Modified: Wed Dec 25 16:27:43 1996
Inode Modified: Sun Aug 10 00:29:58 2003
Deleted: Sun Aug 10 00:29:58 2003

Direct Blocks:
5184 5185 5186 5187

From the istat output we see that inode 10090 is unallocated (same as
blkstat told us about the data unit) . Note also that the first direct block
indicated by our istat output is 5184, just as we calculated.

We can get the data from the direct blocks of the original file by using
icat -r. Pipe the output through less so that we can read it easier. Note that our
keyword is right there at the top:

root@rock:~/able2 # icat -r -o 10260 -f ext able2.dd 10090 | less
/*

* fixer.c

* by Idefix

* inspired on sum.c and SaintStat 2.0

* updated by Cybernetik for linux rootkit
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <stdio.h>

main (argc,argv)

int argc;
char **argv;
<continues>

Barry J. Grundy 155

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

At this point, we have recovered the data we were looking for. We can
run our icat command as above again, this time directing the output to a file
(as we did with the rootkit file from our previous recovery exercise).

One additional note: With the release of Sleuthkit v3.x, we now have a
virtual directory that contains entries for orphan files. As we previously noted,
in our discussion of the fls command, these files are the result of an inode
containing file data having no file name (directory entry) associated with it.
Sleuthkit organizes these in the virtual $OrphankFiles directory. This is a useful
feature because it allows us to identify and access orphan files from the output
of the fls command.

In this exercise, we determined through our calculations that we were
looking for the contents of inode 10090. The Sleuthkit command ffind can tell
us the file name associated with an inode. Here, we are provided with the
$OrphankFiles entry:

root@rock:~/able2 # ffind -o 10260 able2.dd 10090
* /$0rphanFiles/OrphanFile-10090

Keep in mind that various file systems act very differently. Even between
an Ext2 and Ext3 file system there are differences in how files are deleted.
Sleuthkit will simply report what it finds to the investigator. Itis up to YOU to
properly interpret what you are shown.

Barry J. Grundy 156

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #3 — Unallocated Extraction & Examination

As the size of media being examined continues to grow, it is becoming
apparent to many investigators that data reduction techniques are more
important than ever. These techniques take on several forms, including hash
analysis (removing known “good” files from a data set, for example) and
separating allocated space in an image from unallocated space, allowing them
to be searched separately with specialized tools. We will be doing the latter in
this exercise.

The Sleuthkit comes with a set of tools for handling information at the
“block” layer of the analysis model. The block layer consists of the actual file
system blocks that hold the information we are seeking. They are not specific
to unallocated data only, but are especially useful for working on unallocated
blocks that have been extracted from an image. The tools that manipulate this
layer, as you would expect, start with blk and include:

blkls
blkcalc
blkstat
blkcat

We will be focusing on blkls, blkcalc and blkstat for the next couple of
exercises.

The tool that starts us off here is blkls. This command “lists all the data
blocks”. If you were to use the “-e” option, the output would be the same as
the output of dd for that volume, since -e tells blkls to copy “every block”.
However, by default, blkls will only copy out the unallocated blocks of an
image.

This allows us to separate allocated and unallocated blocks in our file
system. We can use logical tools (find, Is, etc.) on the “live” files in a mounted
file system, and concentrate data recovery efforts on only those blocks that
may contain deleted or otherwise unallocated data. Conversely, when we do a
physical search of the output of blkls, we can be sure that artifacts found are
from unallocated content.

To illustrate what we are talking about here, we'll run the same exercise
we did in Sleuthkit Exercise #2, this time extracting the unallocated data from
our volume of interest and comparing the output from the whole volume
analysis vs. unallocated analysis. So, we'll be working on the able2.dd image
from earlier. We expect to get the same results we did in Exercise #2, but this

Barry J. Grundy 157

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

time by analyzing only the unallocated space, and then associating the
recovered data with its original location in the full disk image.

First we'll need to change into the directory containing our able2.dd
image. Then we check the partition table and decide which volume we'll be
examining. Recall that this is where we get our -o (offset) value from for our
Sleuthkit commands. To do this, we run the mmls command :

root@rock:~/Able2# mmls able2.dd
DOS Partition Table
Offset Sector: O

Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 00000EEEO0 O0OEO000001 Primary Table (#0)
01: ----- 0000000001 00000EOO56 OOOOOOOE56 Unallocated
02: 00:00 0000000057 0000010259 0000010203 Linux (0Ox83)
03: 00:01 0000010260 0000112859 0000102600 Linux (0x83)
04: 00:02 0000112860 0000178694 0000065835 Linux Swap...(0x82)
05: 00:03 0000178695 0000675449 0000496755 Linux (0x83)

As with Exercise #2, we've decided to search the unallocated space in the
second Linux partition (at offset 10260, in bold above).

We run the blkls command using the offset option (-0) which indicates
what partition's file system we are analyzing. We then redirect the output to a
new file that will contain only the unallocated blocks of that particular volume.

root@rock:~/Able2# blkls -o 10260 able2.dd > able2.blkls

root@rock:~/Able2# 1s -1h

total 9.4M

-rw-r--r-- 1 root root 9.3M 2008-06-09 09:40 able2.blkls
-rwxrwxr-x 1 root root 330M 2003-08-10 21:16 able2.dd

In the above command, we are using blkls on the second partition (-0
10260) within the able2.dd image, and redirecting the output to a file called
able2.blkls. The file able2.blkls will contain only the unallocated blocks from
the target file system.

Now, as we did in our previous analysis of this file system (Exercise #2)
we will use grep, this time on the extracted unallocated space, our able2.blkls
file, to search for our text string of interest. Read back through Exercise #2 if
you need a refresher on these commands.

Barry J. Grundy 158

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/Able2# grep -abi cybernetik able2.blkls
1631299: * updated by Cybernetik for linux rootkit
9317041:Cybernetik proudly presents...

9323055:Email: cybernetik@nym.alias.net

9323087:Finger: cybernetik@nym.alias.net

The grep command above now tells us that we have found the string
“cybernetik” at four different offsets in the extracted unallocated space. We
will concentrate on the first hit here. Of course these are different from the
offsets we found in Exercise #2 because we are no longer searching the entire
original dd image.

So the next obvious question is “so what?”. We found potential evidence
in our extracted unallocated space. But how does it relate to the original
image? As forensic examiners, merely finding potential evidence is not good
enough. We also need to know where it came from (physical location in the
original image), what file it belongs or (possibly) belonged to, meta data
associated with the file, and context. Finding potential evidence in a big block
of aggregate unallocated space is of little use to us if we cannot at least make
some effort at attribution in the original file system.

That's where the other block layer tools come in. We can use blkcalc to
calculate the location (by data block or fragment) in our original image. Once
we've done that, we simply use the meta data layer tools to identify and
potentially recover the original file, as we did in our previous effort.

First we need to gather a bit of data about the original file system. We
run the fsstat command to determine the size of the data blocks we are
working with.

root@rock:~/Able2# fsstat -o 10260 able2.dd
FILE SYSTEM INFORMATION

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064dal8c0Oc4

CONTENT INFORMATION

Block Range: 0 - 51299
Block Size: 1024

In the fsstat command above, we see that the block size (in bold) is 1024.
We take the offset from our grep output on the able2.blkls image and divide
that by 1024. This tells us how many unallocated data blocks into the

Barry J. Grundy 159

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

unallocated image we found our string of interest. We use the echo command
to pass the math expression to the command line calculator, bc:

root@rock:~/Able2# echo "1631299/1024" | bc
1593

We now know, from the above output, that the string “cybernetik” is in
data block 1593 of our extracted unallocated file, able2.blkls.

This is where our handy blkcale command comes in. We use blkcalc
with the -u option to specify that we want to calculate the block address from
an extracted unallocated image (from blkls output). We run the command on
the original dd image because we are calculating the orginal data block in that
image.

root@rock:~/Able2# blkcalc -o 10260 -u 1593 able2.dd
5184

The command above is running blkcalc on the file system at offset
10260 (-0 10260) in the original able2.dd, passing the data block we calculated
from the blkls image able2.blkls (-u 1593). The result is a familiar block 5184
(see Exercise #2 again). The illustration below gives a visual representation of a
simple example:

| Allocated

. Unallocated

Blocks in original file system:

blkls
image:

blkcalc -o $fs_offset -u 3 original.dd = 49

In the illustrated example above, the data in block #3 of the blkls image
would map to block #49 in the original file system. We would find this with the

Barry J. Grundy 160

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

blkcalc command as shown (this is just an illustration, and does not apply to
the current exercise):

root@rock:~/example# blkcalc -o $fs_offset -u 3 original.dd
49

So, in simple terms, we have extracted the unallocated space, found a
string of interest in a data block in the unallocated image, and then found the
corresponding data block in the original image.

If we look at the blkstat (data block statistics) output for block 5184 in
the original image, we see that it is, in fact unallocated, which makes sense,
since we found it within our extracted unallocated space (we're back to the
same results as in Exercise #2). Note that we are now running the commands
on the original dd image. We'll continue on for the sake of completeness.

root@rock:~/Able2# blkstat -o 10260 able2.dd 5184
Fragment: 5184

Not Allocated

Group: O

Using the command blkcat we can look at the raw contents of the data
block (using xxd and less as a viewer). If we want to, we can even use blkcat to
extract the block, redirecting the contents to another file:

root@rock:~/Able2# blkcat -o 10260 able2.dd 5184 | xxd | less
0000000: 2f2a 0a20 2a09 6669 7865 722e 630a 202a /*. *.fixer.c. *
0000010: 0962 7920 4964 6566 6978 200a 202a 0969 .by Idefix . *.1i
0000020: 6e73 7069 7265 6420 6f6e 2073 756d 2e63 nspired on sum.c
0000030: 2061 6e64 2053 6169 6e74 5374 6174 2032 and SaintStat 2
0000040: 2e30 0a20 2al9 7570 6461 7465 6420 6279 .0. *.updated by
0000050: 2043 7962 6572 6e65 7469 6b20 666T 7220 Cybernetik for
0000060: 6¢C69 6e75 7820 726f 674 6b69 740a 202a linux rootkit. *
0000070: 2f0a 0a23 696e 636C 7564 6520 3c73 7973 /..#include <sys
0000080: 2f74 7970 6573 2e68 3eBa 2369 6e63 6¢75 /types.h>.#inclu ent:
<continues>

root@rock:~/Able2# blkcat -o 10260 able2.dd 5184 > 5184.blkcat

root@rock:~/Able2# 1ls -1h

total 474M

-rw-r--r-- 1 root root 1.0K 2008-11-27 ©04:19 5184.blkcat
-rw-r--r-- 1 root root 9.3M 2008-11-27 03:58 able2.blkls
-rwxrwxr-x 1 root root 330M 2003-08-10 21:16 able2.dd*

Note the size of the file resulting from the blkcat output (5184.blkcat) is
1.0k (1024 bytes - the file system block size), just as expected.

Barry J. Grundy 161

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

If we want to recover the actual file and meta data associated with the
identified data block, we use ifind to determine which meta data structure (in
this case inode since we are working on an EXT file system) holds the data in
block 5184. Then istat shows us the meta data for the inode:

root@rock:~/Able2# ifind -o 10260 -d 5184 able2.dd
10090

root@rock:~/Able2# istat -o 10260 able2.dd 10090
inode: 10090

Not Allocated

Group: 5

Generation Id: 3534950782

uid / gid: 4 / 7

mode: -rw-r--r--

size: 3591

num of links: 0

Inode Times:
Accessed: Sun Aug 10 00:18:36 2003

File Modified: Wed Dec 25 16:27:43 1996
Inode Modified: Sun Aug 10 00:29:58 2003
Deleted: Sun Aug 10 00:29:58 2003

Direct Blocks:
5184 5185 5186 5187

Again, as we saw previously, the istat command, which shows us the
meta data for inode 10090, indicates that the file with this inode is Not
Allocated, and its first direct block is 5184. Just as we expected.

We then use icat to recover the file. In this case, we just pipe the first few
lines out to see our string of interest, “cybernetik”.

root@rock:~/Able2# icat -o 10260 able2.dd 10090 | head -n 10
/*

* fixer.c

* by Idefix

* inspired on sum.c and SaintStat 2.0

* updated by Cybernetik for linux rootkit
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
<continues>

Barry J. Grundy 162

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #4 — NTFS Examination: File Analysis

At this point we've done a couple of intermediate exercises using an
ext2 file system from a Linux disk image. Another common suggestion I receive
in class feedback and from other users of this guide is to provide a more
advanced exercise using a file system more commonly encountered by
examiners in the field. So, in the following exercises we will do some simple
analyses on an NTFS file system.

Some might ask, “why?” There are many tools out there capable of
analyzing an NTFS file system in its native environment. In my mind there are
two very good reasons for learning to apply the Sleuthkit on Windows file
systems. First, the Sleuthkit is comprised of a number of separate tools with
very discrete sets of capabilities. The specialized nature of these tools means
that you have to understand their interaction with the file system being
analyzed. This makes them especially suited to help learning the ins and outs
of file system behavior. The fact that the Sleuthkit does [less of the work for you
makes it a great learning tool. Second, an open source tool that operates in an
environment other than Windows makes for an excellent cross-verification
utility.

The following exercise follows a set of very basic steps useful in most any
analysis. Make sure that you follow along at the command line.
Experimentation is the best way to learn.

If you have not already done so, I would strongly suggest (again) that
you invest in a copy of Brian Carrier's book: File System Forensic Analysis
(Published by Addison-Wesley, 2005). This book is the definitive guide to file
system behavior for forensic analysts. As a reminder (again), the purpose of
these exercises in NOT to teach you file systems (or forensic methods, for that
matter), but rather to illustrate the detailed information Sleuthkit can provide
on common file systems encountered by field examiners.

The file we will use for this exercise can be obtained from:

http://www.LinuxLEO.com/Files/ntfs pract.dd.gz

Let's create a directory in our /root (the root user's home) directory
called /root/ntfs_pract/ and place the file in there. First, we will decompress the
gzipped file using the gzip command we learned earlier and check its SHA1
hash:

Barry J. Grundy 163

http://www.LinuxLEO.com/Files/ntfs_pract.dd.gz

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/ntfs_pract # 1ls

ntfs_pract.dd.gz

root@rock:~/ntfs_pract # gzip -d ntfs_pract.dd.gz
root@rock:~/ntfs_pract # 1s

ntfs_pract.dd

root@rock:~/ntfs_pract # shalsum ntfs_pract.dd
Ocbce7666c8db70377cb5fc2abf9268821b6dafe ntfs_pract.dd

Now we will run through a series of basic Sleuthkit commands as we
would in any analysis. The structure of the forensic image is viewed using
mmls:

root@rock:~/ntfs_pract # mmls ntfs_pract.dd
DOS Partition Table

Offset Sector: 0O

Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 000000000 000000000 000000006001 Primary Table (#0)
01: ----- 000000006001 0000000658 0000000658 Unallocated
02: 00:00 00000000659 0001023059 000102306001 NTFS (0x07)
03: ----- 0001023060 0001023999 0000000940 Unallocated

The output shows that an NTFES partition (and most likely the file
system) begins at sector offset 59. This is the offset we will use in all our
Sleuthkit commands. We now use fsstat to have a look at the file system
statistics inside that partition:

root@rock:~/ntfs_pract # fsstat -o 59 -f ntfs ntfs_pract.dd
FILE SYSTEM INFORMATION

File System Type: NTFS

Volume Serial Number: E4D06402D0O63D8F6
OEM Name: NTFS
Volume Name: NEW VOLUME

Version: Windows XP

METADATA INFORMATION

First Cluster of MFT: 42625

First Cluster of MFT Mirror: 63937
Size of MFT Entries: 1024 bytes
Size of Index Records: 4096 bytes
Range: 0 - 144

Root Directory: 5

CONTENT INFORMATION

Sector Size: 512
Cluster Size: 4096
<continues>

Barry J. Grundy 164

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Looking at the fsstat output on our NTFS file system, we see it differs
greatly from the output we saw running on a Linux EXT file system. The tool is
designed to provide pertinent information based on the file system being
targeted. Notice that when run on an NTFS file system, fsstat provides us with
information specific to NTFS, including data about the Master File Table (MFT)
and specific attribute values.

We will now have a look at how the Sleuthkit interacts with active and
deleted files on an NTFS file system, given the structure of MFT entries.

Let's begin this exercise with the output of fls. We can specify that fls
only show us only “deleted” content on the command line with the -d option.
We will use -F (only file entries) and -r (recursive) as well:

root@rock:~/ntfs_pract # fls -Frd -o 59 ntfs_pract.dd
r/r * 42-128-1: Cookies/buckyball@revsci[2].txt

r/r
r/r
r/r
r/r
r/r
r/r

*

*

* F X Xk

43-128-1: Cookies/buckyball@search.msn[1].txt

44-128-1: Cookies/buckyball@slashdot[1].txt

45-128-1: Cookies/buckyball@sony.aol[2].txt

112-128-4: My Documents/My Pictures/bandit-streetortrack2005056.jpg
116-128-4: My Documents/My Pictures/fighterama2005-ban4.jpg
81-128-4: My Documents/direct_attacks.doc

As of Sleuthkit version 3, the output of fls now shows content that
includes NTFS “orphan” files.? Previous versions required the user to run an
additional command, ifind, on parent directories in order to recover orphan
files. The article in the footnote explains how this works.

The output above shows that our NTFS example file system holds 7
deleted files. Let's have a closer look at some NTFES specific information that
can be parsed with the Sleuthkit.

Have a look a the deleted file at MFT entry 112. The file is ./ My
Documents/My Pictures/bandit-streetortrack2005056.jpg . We can have a closer
look at the file's attributes by examining its MFT entry directly. We do this
through the istat tool. Recall that when we were working on an EXT file system
previously, the output of istat gave us information directly from the inode of
the specified file (see Sleuthkit Exercise #1). As we mentioned earlier, the
output of the Sleuthkit tools is specific to the file system being examined. So
let's run the command on MFT entry 112 in our current exercise:

20TSK Informer, issue #16: http://www.sleuthkit.org/informer/sleuthkit-informer-16.txt “NTFS Orphan Files”

Barry J. Grundy 165

http://www.sleuthkit.org/informer/sleuthkit-informer-16.txt

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/ntfs_pract # istat -o 59 ntfs_pract.dd 112
MFT Entry Header Values:

Entry: 112 Sequence: 2

$LogFile Sequence Number: 4201668

Not Allocated File

Links: 2

$STANDARD_INFORMATION Attribute Values:
Flags: Archive

Owner ID: 0O

Created: Sat Apr 7 00:52:53 2007

File Modified: Sat Oct 14 10:37:13 2006
MFT Modified: Sat Apr 7 00:52:53 2007

Accessed: Sat Apr 7 20:00:04 2007

$FILE_NAME Attribute Values:

Flags: Archive

Name: bandit-streetortrack2005056.jpg
Parent MFT Entry: 110 Sequence: 1
Allocated Size: 0 Actual Size: 0
Created: Sat Apr 7 00:52:53 2007

File Modified: Sat Apr 7 00:52:53 2007
MFT Modified: Sat Apr 7 00:52:53 2007
Accessed: Sat Apr 7 00:52:53 2007

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72
Type: $FILE_NAME (48-3) Name: N/A Resident size: 90

Type: $FILE_NAME (48-2) Name: N/A Resident size: 128

Type: $DATA (128-4) Name: $Data Non-Resident size: 112063
60533 60534 60535 60536 60537 60538 60539 60540

60541 60542 60543 60544 60545 60546 60547 60548

60549 60550 60551 60552 60553 60554 60555 60556

60557 60558 60559 60560

The information istat provides us from the MFT shows values directly
from the $STANDARD INFORMATION attribute (which contains the basic
meta data for a file), the $FILE_NAME attribute and basic information for other
attributes that are part of an MFT entry. The data blocks that contain the
actual file content are listed at the bottom of the output (for Non-Resident
data).

Take note of the fact that there are two separate attribute identifiers for
the $FILE_NAME attribute, 48-3 and 48-2. It is interesting to note we can
access the contents of each attribute separately using the icat command.

The two attributes store the DOS (8.3) filename and the Win32 (long) file
name. By piping the output of icat to xxd we can see the difference. By itself,
this may not be of much investigative interest, but again we are illustrating the
capabilities of the Sleuthkit tools.

Barry J. Grundy 166

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Note the difference in output between the attribute identifiers 112-48-3
and 112-48-2:

root@rock:~/ntfs_pract # icat -o 59 ntfs_pract.dd 112-48-3 | xxd
0000000: 6e00 OOCO OO 0100 3071 be99 dO78 c701 n....... 0qg...X..
0000010: 3071 be99 dO78 c701 3071 be99 dO78 c701 0Og...X..0q...X..
0000020: 3071 be99 dO78 c701 COOO OOOO OOOO OO0 OQF...X...vw.wn..
0000030: OOO0 OO OO 00O 2000 OO 0O OO
0000040: 0cO2 4200 4100 4e00 4400 4900 5400 7e00 ..B.A.

0000050: 3100 2e00 4a00 5000 4700 1...3

root@rock:~/ntfs_pract # icat -o 59 ntfs_pract.dd 112-48-2 | xxd

0000000: 600 OOOO 0OOO 0100 3071 be99 dO78 c701 n....... 0g...X..
0000010: 3071 be99 dO78 c701 3071 be99 dO78 c701 0Og...X..0Q...X..
0000020: 3071 be99 dO78 c701 OOOO OOOO OOOO OO OF...X..''vww...
0000030: 0000 OOOO O0OOO OEOE 2000 OO0 OO OO0u.s

0000040: 1f01 6200 6100 6e00 6400 6900 7400 2d0O0O .b.a.n.d.i.t.-
0000050: 7300 7400 7200 6500 6500 7400 600 7200 s.t.r.e.e.t.o.r
0000060: 7400 7200 6100 6300 6bOO 3200 3000 3000 t.r.a.c.k.2.0.0
000OO70: 3500 3000 3500 3600 2e00 6a00 7000 67060 5.0.5.6 j.p.9

The same idea is extended to other attributes of a file, most notably the
“Alternate Data Streams” or ADS. By showing us the existence of multiple
attribute identifiers for a given file, the Sleuthkit gives us a way of detecting
potentially hidden data. We cover this in our next exercise.

Barry J. Grundy 167

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #5 — NTEFS Examination: ADS

First, to see what we are discussing here, in case the reader is not
familiar with alternate data streams, we should compare the output of a normal
file listing with that obtained through a forensic utility.

Obviously, when examining a system, it may be useful to get a look at all
of the files contained in an image. We can do this two ways. The first way
would be to simply mount our image with the loop back device and get a file
listing. We will do this to compare a method using standard command line
utilities that we used in the past with a method using the Sleuthkit tools.

Remember that the mount command works on file systems, not disks.
The file system in this image starts 59 sectors into the image, so we mount
using an offset. We can then obtain a simple list of files using the find
command:

root@rock:~/ntfs_pract # mount -t ntfs -o ro,loop,offset=30208
ntfs_pract.dd /mnt/analysis/

root@rock:~/ntfs_pract #cd /mnt/analysis/

root@rock:~/analysis # find . -type f
./Cookies/buckyball@as-eu.falkag[2].txt
./Cookies/buckyball@207[1].txt
./Cookies/buckyball@ad.yieldmanager[1].txt
./Cookies/buckyball@specificclick[1].txt
./Cookies/buckyball@store.makezine[1].txt
./Cookies/buckyball@store.yahoo[2].txt
[content removed]
./Favorites/2600 The Hacker Quarterly.url
[content removed]
./My Documents/My Pictures/Tails/GemoTailG4.jpg
./My Documents/signatures.pdf
./My Documents/ULTIMATEJOURNEYDK.wmv
./My Documents/Webstuff/bandit2. jpg
./My Documents/Webstuff/m2_flat_CF.jpg
./My Documents/Webstuff/servicel. jpg
./My Documents/Webstuff/Thumbs.db
./NTUSER.DAT
./SVstunts.avi <---Take note of this file

We mount the image with an offset of 30208 (59*512) to access the NTES
file system. We then change to the directory containing our mounted image
and run our find command, starting in the current directory (“.”), looking for
all regular files (type -f). The result gives us a list of all the allocated regular

files on the mount point. Of particular interest in this output is the last file in

Barry J. Grundy 168

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

the list, SVstunts.avi. Take note of this file. Our current method of listing files,
however, gives us no indication of why this file is noteworthy.

The output of the file commands shows us the expected output. Itis an
avi video. Were we to install a video player and the proper codecs, we would
see that it is, in fact, a normal video?'.

root@rock:~/ntfs_pract # file /mnt/analysis/SVstunts.avi
/mnt/tmp/SVstunts.avi: RIFF (little-endian) data, AVI, 160 x 120,
15.00 fps, video: Cinepak

Now let's try another method of obtaining a file list. Since this is a
forensic examination, let's use a forensic tool to give us a list of files. We will
use the fls command with the -F option to show only files, and the -r option to
recurse through directories (starting from the root directory, by default). The

« ”»

...” signifies removed output for brevity.

root@rock:~/ntfs_pract # fls -Fr -o 59 -f ntfs ntfs_pract.dd
r/r 4-128-4: $AttrDef

r/r 8-128-2: $BadClus

r/r 8-128-1: $BadClus:$Bad
r/r 6-128-1: $Bitmap

r/r 0-128-1: $MFT

r/r 1-128-1: $MFTMirr

r/r 9-128-8: $Secure: $SDS

r/r * 42-128-1: Cookies/buckyball@revsci[2].txt
r/r * 43-128-1: Cookies/buckyball@search.msn[1].txt
r/r * 44-128-1: Cookies/buckyball@slashdot[1].txt

r/r 128-128-3: My Documents/My Pictures/Thumbs.db

r/r 128-128-4.: My Documents/My Pictures/Thumbs.db:encryptable
r/r * 112-128-4: My Documents/My Pictures/bandit-
streetortrack2005056. jpg

r/r * 116-128-4: My Documents/My Pictures/fighterama2005-ban4.jpg

r/r 129-128-4: My Documents/Osuny Articles courtesy of BIOC Agent.doc
r/r 130-128-4: My Documents/signatures.pdf

r/r 131-128-4: My Documents/ULTIMATEJOURNEYDK.wmv

r/r 133-128-3: My Documents/Webstuff/bandit2.jpg

r/r 134-128-4: My Documents/Webstuff/m2_flat_CF.jpg

r/r 135-128-3: My Documents/Webstuff/servicel.jpg

r/r 136-128-3: My Documents/Webstuff/Thumbs.db

r/r * 81-128-4: My Documents/direct_attacks.doc

r/r 138-128-3: NTUSER.DAT

r/r 137-128-3: SVstunts.avi <---Using fls we now see

r/r 137-128-4: SVstunts.avi:hacktrap.txt two entries for this file

“'You can use the xine player on a standard Slackware intallation.

Barry J. Grundy 169

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Note that fls displays far more information for us than our find
command on the mounted file system. Included with our “regular files” are the
NTEFS system files (starting with the “$”), including the $MFT and
SMFTMIRROR (record numbers 0 and 1). Also note the last file in the list again,
SVstunts.avi. In the output of fls, SVstunts.avi has two entries:

r/r 137-128-3: SVstunts.avi
r/r 137-128-4: SVstunts.avi:hacktrap.txt

Both entries have the same MFT record number and are identified as file
data (137-128) but the attribute identifier increments by one (137-128-3 and
137-128-4)*. This is an example of an “Alternate Data Stream” (ADS).
Accessing the standard contents (137-128-3) of SVstunts.avi is easy, since it is
an allocated file. However, we can access either data stream, the normal data
or the ADS, by using the Sleuthkit command icat, much as we did with the two
file name types in our previous exercise. We simply call icat with the complete
MFT record entry, to include the alternate attribute identifier. To view the
contents of the ADS (137-128-4):

root@rock:~/ntfs_pract # icat -o 59 -f ntfs ntfs_pract.dd 137-128-4

<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()=>-<()>-<()>-<()>-<()~>
an [1\
\| PROFESSOR FALKEN?"S |1/
an [1\
\| GUIDE TO |1/
/11 [1\
\ll * k k k% * k k k% * % % % * k k k% ||/
/ll * * * * * * * ||\
\ll * * * * * * %k % % % ||/
/ll * * * * * * * ||\
\ll * % % % % * % % % % * % % % * % % % % ||/
an P { [1\
\ | |1/
/11 HACKING SECURITY | 1\
\ (c)1988]| |/
<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>-<()>

First I'd like to thank the following people for thier contributions

<continues>

Pipe the results through less to see the whole file, or redirect the output
to another file.

22 Again, I would urge you to read Carrier's book: File System Forensic Analysis.

Barry J. Grundy 170

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #6 — NTFS Examination: Sorting Files

We will now explore a Sleuthkit tool we have not looked at yet. Many
forensic tools provide a mechanism for categorizing files based on type. This
reduces the amount of time examiners need to spend finding files of interest.
The Sleuthkit provides this function through the sorter command. This tool
parses the allocated and unallocated files of a file system and tests their
headers for file type (remember the file command from our earlier exercise?).

The sorter command is highly configurable. The default files are found
in the ./share/sorter directory of the Sleuthkit installation. The file default.sortis
used for all operating systems, and there are also configuration files specific to
each operating system.

There are a number of ways sorter can report its findings. It is useful to
have the categories of files written out to a directory specified by the analyst.
First we need to create a directory to write these results to:

root@rock:~/ntfs_pract # mkdir sort_out

Let's run the command and have a look at the output. There are lots of
options available for sorter. Here's the command we'll use:

root@rock:~/ntfs_pract # sorter -d ./sort_out -md5 -h -s -o 59 -f ntfs ntfs_pract.dd
Analyzing "ntfs_pract.dd"

Loading Allocated File Listing

Processing 138 Allocated Files and Directories

100%

Loading Unallocated File Listing
Processing 23 Unallocated meta-data structures
100%

All files have been saved to: ./sort_out

We call the sorter command with the -d <output directory> option to
write our results and categorize the files. The -md5 option hashes the files for
us. We use the -h option to create html output rather than the default text files.
The -s option copies the categorized files to the output directory and the other
options are the standard Sleuthkit options required to specify the file system.

Barry J. Grundy 171

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Our output ends up in the ./sort_out directory:

root@rock:~/ntfs_pract # 1s sort_out/

archive/ audio.html disk/ documents.html images/ mismatch.html
archive.html data/ disk.html exec/ images.html system/
audio/ data.html documents/ exec.html index.html system.html
text.html text/ unknown.html

Note that we have an index.html file. This can be opened in our Web
browser of choice. We also have a set of directories containing our files
(exported with the -s option) and html pages for each. The index page,
generated from our above sorter command, looks like this:

sorter output

Images
e ntfs_pract.dd
Files (161)

¢ Allocated (138)
+ Unallocated (23)

Files Skipped (36)

¢ Non-Files (36)
¢ 'ignore' category (0)

Extensions

¢ Extension Mismatches (25)

Categories (125)

e archive (1)

e audio (1)

e compress (0)

e crypto (0)

o data (9)

e disk (1)

e documents (2)

¢ exec (4]

e images (17) (thumbnails)

a ctretarm (AY

The page is basic html and easy to edit for your report. The name of the
image used as input is given along with basic information about the numbers
of allocated and unallocated files processed. Note that we are also given the
number of, and a link to, “Extension Mismatches” - where the file header
information identified a file different than the extension on the file name.

Barry J. Grundy 172

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

If you look down the list of categories, you will see “images”. The sorter
command found 17 images (pictures). You can click on the “images” link and
see information for each file found, including a link to the exported image:

images Category

My Documents/My
Pictures/b45ac806a965017dd71e3382581c47f3_refined.jpg
JPEG image data, JFIF standard 1.01
Image: ntfs_pract.dd Inode: 111-128-4
MD5: 2c966ade4ff16ef8fe95e6607987644¢e
Saved to: images/ntfs pract.dd-111-128-4.jpg

<continues>

Or you can click on “thumbnails” to view the pictures together:

Image Thumbnails - Page 1

A B c

; i ‘ .-, B
b45acB806a965017dd71e3382581¢47f3 refinedjpg bankorl jpg fighterama2005-ban3.jpg pvannorden2.,jpg
details details details details

As we can see, sorter provides a very convenient way to organize files
based on type. This is a powerful tool with fully customizable configuration
files where you can limit what is categorized and processed. Read the man
pages. There are options available in sorter to utilize hash databases for further
data reduction and other useful features.

What we have seen here are simple (and in many ways incomplete)
examples of the Sleuthkit’s command line tools for forensic examination. If
you are left a little confused, just go through the exercises and steps one at a
time. If you don’t understand the commands or options, check the usage and
read the man pages and Sleuthkit documentation. Run through the exercise a
couple of times, and the purpose and outcome will make more sense. Take
your time and experiment a little with the options.

Barry J. Grundy 173

file:///home/bgrundy/LinuxIntro/Current/Exercises/NTFS_Practical/sort_out/images/ntfs_pract.dd-111-128-4.jpg

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Sleuthkit Exercise #7 — Signature Search in Unallocated Space

Now let's do the same sort of unallocated analysis we did in Exercise #3,
but this time instead of searching for text data, we will look for file signatures.
This will give us an opportunity to introduce another useful Sleuthkit tool,
sigfind.

For this particular exercise, we'll use the NTFS image we used
previously, ntfs_pract.dd. Change to the directory containing that image and
let's begin.

As always, we start with mmls to help us identify the offset of the file
system within the image that we are interested in.

root@rock:~/NTFS# mmls ntfs_pract.dd
DOS Partition Table

Offset Sector: O

Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 000000006 000000006 000000006001 Primary Table (#0)
01: ----- 0000000001 0000000058 0000000058 Unallocated
02: 00:00 0000000059 0001023059 0001023001 NTFS (0x07)
03: ----- 0001023060 0001023999 0000000940 Unallocated

Here we want to study the unallocated data from the NTFS file system at
sector offset 59. So we issue our blkls command and redirect the output to
another file:

root@rock:~/NTFS# blkls -o 59 ntfs_pract.dd > ntfs_pract.blkls

root@rock:~/NTFS# 1ls -1h
total 995M
-rw-r--r-- 1 root

root 478M 2008-06-09 10:01 ntfs_pract.blkls

Once again, the output file is arbitrarily named. I give it a .blkls
extension for the sake of simplicity. Now, let's go ahead and search the
unallocated image we created for JPEG images. We use these JPEG picture files
for our example because most experienced forensic examiners are familiar with
the signatures.

To do this search, we could use the string “JFIF”, a known component of
JPEG file signatures. Using xxd to give us an ASCII representation of the file, we

Barry J. Grundy 174

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

could simply search using grep for the characters “JFIF”, take note of the
offsets and work from there, much like we did in our Data carving with dd
exercise. In that case, though, we looked for the ffd8 hex signature. We then
had to do a number of calculations to covert the xxd hex values, etc. Refer back
to the Data carving with dd exercise for more info and a refresher on how we
did this.

There are issues with using grep to search for data in a forensic image or
file system. Aside from having to rely on values and conversions from xxd
(which gives us our ASCII representation for grep), another problem with using
grep is that it is completely unaware of sector or data block boundaries. The
grep program is actually designed to search for text in files, not signatures in
forensic images or file systems. Depending on the system being employed,
there may also be file size (addressing) limitations with using grep on large
images.

So instead, let's have a look at a far more forensic friendly signature
search tool provided by the Sleuthkit. This tool, sigfind is designed to look for
hex signatures with search block sizes specified by the user and offsets to the
signature within that block size.

sigfind is most commonly used to search for signatures of disk
structures, and is particularly well suited to this task, because in addition to
showing each hit, it shows the distance from the previous hit. This is helpful in
that it allows a knowledgeable examiner to determine the veracity of hits by the
expected frequency and distance between certain file system structures (like
EXT superblocks, for example). In fact, sigfind works with a number of
templates that are supported by the -t option. Run the command with -t to see
a list of included templates.

As we mentioned, a file system's block size can be passed to sigfind so
that each block can be searched for the proper expression at a given offset,
which helps account for cluster aligned files or structures®. We already
determined the cluster size in the ntfs_pract.dd NTFS file system is 4096 (found
using fsstat). Itis important for a Sleuthkit beginner to realize that the offset
we provide to the sigfind command is different from the offset we provide in
other Sleuthkit commands. In most Sleuthkit commands that are passed an
offset option with -0 we are referring to the location (offset in sectors) of a file
system within a forensic image. It the case of sigfind the offset we pass with -o
is the offset to the specified signature from the start of each block being
searched as specified by block size (-b).

#But will not help with files embedded within other files, of course.

Barry J. Grundy 175

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

For example, the man page for sigfind gives the example of searching for
a boot sector signature with the command:

root@rock:~/NTFS# sigfind -o 510 -1 AA55 disk.dd

In this case, the block size is the default 512 (no -b option is given). The
-0 510 tells sigfind to look for the signature 510 bytes into every sector it
searches. The -1 option refers to the endian ordering of the signature.

Back to our exercise at hand...We must also keep in mind that sigfind
takes hex as it's signature string, so unlike grep, we cannot simply search for
“JFIF”. We need to convert the ASCII string to hex. This is easily done by
echoing the string to xxd with the -p option (continuous or “plain” dump):

root@rock:~/NTFS# echo -n JFIF | xxd -p
42464946

Also note in the above command, we use the -n option to echo to
prevent a newline character from being passed to xxd as well. The hex
signature we are going to search for is 4A464946 (“JFIF”).

We can now do our sigfind command.

root@rock:~/NTFS# sigfind -b 4096 -0 6 4A464946 ntfs_pract.blkls
Block size: 4096 Offset: 6 Signature: 4A464946

Block: 57539 (-)

Block: 57582 (+43)

The command above shows us running sigfind with a block size (-b) of
4096 (from fsstat output), an offset (-0) of 6, and a signature of 4A464946 on
the extracted unallocated space ntfs_pract.blkls.

As you can see, we come up with two hits. Now we use the blkcalc
command to determine the block address of the unallocated block in the
original image.

root@rock:~/NTFS# blkcalc -o 59 -u 57539 ntfs_pract.dd
60533

Above, we called blkcalc with -u 57539 to indicate that we are passing an
address from an unallocated image provided by blkls. The file system this
unallocated block was extracted from is in our nifs_pract.dd image at sector

Barry J. Grundy 176

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

offset 59. The result shows us that unallocated block 57539 in our blkls image
maps to data block 60533 in the original file system.

Now that we have the data block (60533) in the original file system, we
can use ifind to identify the meta data structure that is assigned to that data
block. In this case the meta data structure is an MFT entry, since we are
working with an NTFS file system.

root@rock:~/NTFS# ifind -o 59 -d 60533 ntfs_pract.dd
112-128-4

The MFT entry is 112-128-4 or simply 112 (The 128-4 portion denotes
the $DATA attribute identifier). We can use ffind to determine the file name
that holds (or held) that particular MFT entry. Be very careful of interpretation
here. As always, you need to have a firm grip on how the file system works
before deciding that the information being presented is accurate, depending
on the file system being examined.

root@rock:~/NTFS# ffind -o 59 ntfs_pract.dd 112
* /My Documents/My Pictures/bandit-streetortrack2005056.jpg

Recovering the deleted file using icat and piping the results to the file
command indicates that we have found a JPEG image, which the previous ffind
command indicated may have been called bandit-streetortrack2005056.jpg.

root@rock:~/NTFS# icat -o 59 ntfs_pract.dd 112 | file -
/dev/stdin: JPEG image data, JFIF standard 1.02

Recall now our original sigfind output:

root@rock:~/NTFS# sigfind -b 4096 -0 6 4A464946 ntfs_pract.blkls
Block size: 4096 Offset: 6 Signature: 4A464946

Block: 57539 (-)

Block: 57582 (+43)

We have already recovered (or at least identified) the deleted file at
unallocated block 57539 in our blkls image. Running those same commands
on the second hit at 57582 will give us this:

Barry J. Grundy 177

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

root@rock:~/NTFS# blkcalc -u 57582 -0 59 ntfs_pract.dd
60662

root@rock:~/NTFS# ifind -o 59 -d 60662 ntfs_pract.dd
116-128-4

root@rock:~/NTFS# ffind -o 59 ntfs_pract.dd 116
* /My Documents/My Pictures/fighterama2005-ban4.jpg

root@rock:~/NTFS# icat -o 59 ntfs_pract.dd 116 | file -
/dev/stdin: JPEG image data, JFIF standard 1.01

We have another JPEG, this one at MFT entry 116, and named
fighterama2005-ban4.jpg.

We can actually recover both files by using icat and redirecting to new
files. I've named the files by their MFT entry and the .jpg extension, since the
file command confirmed that's what they are.

root@rock:~/NTFS# icat -0 59 ntfs_pract.dd 112 > 112.jpg
root@rock:~/NTFS# icat -0 59 ntfs_pract.dd 116 > 116.jpg

You can now view the files with any graphics viewer you might have
available. For example, you can use the display command:

root@rock:~/NTFS# display 112.jpg
<shows image on desktop>

Barry J. Grundy 178

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

SMART for Linux

SMART, by ASR Data, is a commercial (not free) GUI based forensic tool
for Linux that has a great interface allowing access to a full set of forensic
analysis capabilities.

http://www.asrdata.com/SMART/

SMART splash screen and login.

Following is a small tour to give you a taste of the SMART interface. The
official user manual for SMART is packed with useful information, and this
section is not meant to be an exhaustive manual. We are just providing a brief
overview of some of SMART's major capabilities. If you would like to follow
along, there is an evaluation version (no acquisition or export capability) of
SMART available at:

http://www.asrdata2.com/*!

The evaluation version also comes with the SMART manual in PDF
format. A worthwhile read.

The evaluation file is in “bz2” format. Untar with the “xjvf” switches, change to the resulting directory and read the
INSTALL file.

Barry J. Grundy 179

http://www.asrdata2.com/
http://www.asrdata2.com/
http://www.asrdata.com/SMART/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Opening SMART provides the user with a view of the physical layout of
all the devices recognized on the system, including internal and external drives.
This gives the examiner an overall picture of what file systems reside on each
drive, the sizes of each partition, and the amount of unallocated space on the
drive.

File Cases Log Utilities Help

_(Storage Devices |

.| LITE-OHN DVDRW SOHW-16733 (Unknown Size) FS: 150 N

~/ fdewhdc Secondary Master
ATA 3T3250823A5 (232.086 GB)

7 rdevisda Bus:Z Channel:0 1d:0 Lun:0

Unallocated Data (31.5 KB)
fdevizda (Sector O)

gess HPFSINTFS (7) Partition (39.060 GE) F5: NTFS RO: imntiwindows
sy fewrsdal
mows Linux (83) Partition (101.95 ME) F5: EXT3 RW: /oot

[2reaiv)
maey Slpwdsdal

fems Linux Swap (62) Partition (350.53 ME]
e foey/sdad

fums Linux (83) Partition (192 766 GB) FS:EXTS RW:f
et fewisdad

Unallocated Data (2.43 MB)
fdevizda (Sector 468,392 ,065)

ATA 3T3250823A8 (232.8586 GE)
7 rdevisdb Bus:3 Channel:0 ld:0 Lun:0

Unallocated Data (31.5 KEB)
fdevizdb (Sector O)

|

SMART's opening window, with device identification.

SMART is a “right click” driven program. Most functions available to an
examiner for a given object are accessed through a mouse driven menu system.
For instance, right clicking on a physical device (disk or partition) provides a
menu that includes “Acquire”. Selection of this item provides a dialog box to
allow forensic imaging.

Barry J. Grundy 180

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

: MAXTOR 6L080.4 (74.556 GE) :
. fdevihda Primary Master

Forensic image acquisition dialog box. Red text indicates incomplete items...

;| Case_Mame

These are notes far an image acquisisiton,

The "image" tab, under "acquire".

Barry J. Grundy 181

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Case management under SMART is straightforward. Once a forensic
image (or multiple images) is added as evidence to a case, SMART will parse the
image and provide details on the contents. Here we’ve opened a new case
called “NTFS Practical” and added our ntfs_pract.dd image to that case:

File Cases Log Utilities Help

(Storage Devices |/ Case: NTF3 Practical

[) IMAGES

4l nifs_pract (500.00 ME)
= frootExercises/MTFS_Practical/ntfs_pract.dd

Unallocated Data (23.5 KB)

nifs_pract (Sectar 0)
gems HPFSINTFS (7) Partition (433.51 ME) FS: NTFS (MEW YOLUME)
el nifs_pract (Sectar 53)

Unallocated Data (470.0 KE)
nifs_pract (Sector 1,023,060)

EIC

e
-

A SMART view of our evidence image.

We see each of the partitions as a graphical representation of the same
sort of information we might gather using fdisk-1 or mmls on a physical disk.

Right clicking on a partition allows you to “Study” it and obtain
information and a file listing (including deleted files).

In our NTFS example, we can right click on the NTFS partition at sector

offset 59, select “Filesystem --> SMART --> Study” and obtain the following
information:

Barry J. Grundy 182

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

499 51 MB (523, 776, 000 Bytes) of total wolume space. [~
477,17 MB (500, 346, 380 Bytes) of pure wvnallocated space. []
1 wnrecognized//corcupt SMFT record(s) skipped.

Active Objects:

21. 62 MB (22,668,140 Bytes) in 102 files.

134.6 KB (137,860 Bytes) in file slack space.

2e4.3 EE (270,688 Bvtes) in 3 normal named streams.
4.3 KB (4,448 Bytes) in named-stresm slack space.

Deleted Objects:

328.2 KB (336,117 Bytes) in 7 files.

T.3 KB (7,449 Bytes) in file slack space.
0E {0 Bytes) in 0 named stresms.

0B (0 Bytes) in named-stream slack space.
0 data bytes are overwritten by active data

Misc Stats:

Sectors per Cluster: B
Byvtes per Cluster: 4098
Media Descriptor: 248
Sectors in Volume: 1023000
SMFT LCH: 42625

SMFTMirr LCM: 63937

SMFT 0ffset: 174522000
Bytes per FILE: 1024

Bytes per INDX: 4096
Volume Serial Mumber: 16487738199052302532
SMFT Records: 144

o]

save file listas HTML Tab-Delimited Copy to Cliphoard File List Dismiss <3

File system information - obtained from an FS "Study".

At the bottom of this output, we see options that allow us to export a full
file listing as an HTML file or as a tab-delimited file (suitable for importing into
spreadsheets, etc.).

Note also that we can directly view a file list using the “File List” button.

In addition to giving us access to a visual representation of the file list (to
include deleted files), this is also where we can go to start our logical analysis.

Barry J. Grundy 183

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

File Edit

| File List | Filter |

113 of 113 Files shown

& /$MFT 144.0 KB |+ |
[/$hAFThirr 4.0 KB [T
(4 /$LogFile 4.50 MB
4 /$volume 0E
[/sattrDef 25 KB
[/$Bitmap 15.6 KB
[/$Boot 8.0 KB
M /$BadClus 0B | |
(4 /$BadClus:$Bad 499.51 MB
(4 /$Secure:$3D5 2579 KB
4 /$UpCase 126.0 KB
(4 /Desktopddtrsetup.exe 141 ME
[/Cookiessbuckyball@zo7[1] b4 437 B
(4 /Cookiesdbuckyball@ad.yieldmanagerl].t 411 B
(4 /Cookiessbuckyball@adopt.specificclick[2].t B47 B
(4 /Cookiesfbuckyball@ads. asdxtmos[1] b 102 B
(4 /Cookiesfbuckyball@ads.pointroll[2] b 393 B
[/Cookiessbuckyball@adyertising[2].t 321 B
[/Cookiessbuckyball@as-eu falkag[2] t S0Z B
[y /Cookiessbuckyball@atdmi1].t-t 96 B
[y /Conkiesfbuckyball@atwola1] -t 95 B
[/Cookiesfbuckyball@citysearch(2) b 674 B
(4 /Cookiessbuckyball@perfovarture[1] b 107 B
(4 /Cookiessbuckyball@rad microsof]2] b fa0 B
[% /Cookiessbuckyball@revsci[2] b 253 B
[% /Cookiessbuckyball@search.msn[1].t«t 322 B
% /Cookiessbuckyball@slashoot1].tt 339 B |
[% /Cookiesfbuckyball@sony. anl[2] -t 76 B %
| m Mnf AL [T H Lim 1041 b oL oo o

File listing obtained from a "studied" file system

Barry J. Grundy 184

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

File List: ntfs_pract (Sector 59)

File Edit

[File List [Filter |

113 0f 113 Files Shown

[4 /Cookies/buckyball@ads asd= tmes[1] b 102 B |2
4 /Cookies/buckyball@ads. pointroll[2] t 393 B
[Y /Cookiesthuckyhall@adyerising[2].t« 5921 B
[/Cookiessbuckyball@as-eu falkag[2].tt a0z B —
[4 /Cookies/buckyball@atdmi]1] t<t 96 B
[4 /Cookies/buckyball@atwalall] bt 95 B
[4 /Cookiessbuckyball@citysearch]z] b 674 B [
[/Cookiestbuckyball@perf.overure[1].t 107 B
[4 /Cookies/buckyball@rad microsof[Z] t 7a0 B
[/Cookiessbuckyballi@reysci[z] td 253 B
[# /Cookiestbuckyl Show File Infa |t JZE B
@ /Cookiesfbuckyh Export File Info J35 B
B /Cookies/uckyh] o b 76 B
[B /Cookies/buckyl coo, i<t 9B
[/Cookiesfbuckyh Produce Hash.] =t 2al B
[4 /Cookies/buckyh Export Files.. it 120 B
[/Cookies/hucky emermoreyraroopored 320 B
4 /Cookiessbuckyball@streetfighters[2] b G433 B [
[/Cookiesthuckyhall@wwwthemotorbookstore[1].td 300 B |
[P S T TP T P 2L PO oo |

Right click menu on a deleted file.

The right click menu displayed for a file in a file listing allows you to per-
form a number of tasks. In the above screen shot, we see that we have the abil-
ity to export the contents or view detailed information of the deleted cookie
file.

SMART Filtering

Within SMART, there are two major ways to parse for information. The
first is by using “filtering”. Filtering works at the logical level. Filters are based
on file meta data like modified, accessed and created times; or filenames and
extensions; or attributes like “deleted or allocated”, etc. The other method is
by “searching”, which is done at the physical level using either complex expres-
sions or simple terms. We will briefly describe each method here, starting with
filtering.

Continuing with our file list, let's move to the “Filter” tab. The filter list
is currently empty. Right click in the empty space and select “Add New Filter --

Barry J. Grundy 185

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

> Active/Deleted Filter”. This simple filter, when applied using the button at the
bottom of the dialog, will alter our file list to show only deleted files:

File Edit

[File List | Filter |

Fs
-

| Deleted Files Oy & |

-
-

[rever] ey |

Adding the Active/Deleted Filter

Clicking back on our “File List tab” shows us all seven of the deleted files
we identified in our earlier Sleuthkit exercise:

File Edit

| File List | Filter |

Fof 113 Files Showh

[% /Cookiessbuckyball@reysci[?] bt 233 B |~
[/Cookiessbuckyball@search msn[1] b 32z B |-
/Cookiessbuckyball@slashdot]1] 330 B
% /Cookiessbuckyball@sony. aol[Z] bt 76 B
[% vy Documentsidirect attacks.doc 34.5 KB
% /My Documents/by Picturessbandit-streetortrack2005056 jpg 1094 KB
® /My Documents/hy PicturesAighteramaz005-hand jpg 183.3 KB [1]

SMART also comes with a decent set of predefined filters that can be
used “out of the box”. These are listed under the right click menu item “Term
Library”.

The ability to “stack” filters provides even more power. Suppose we
want to view only a list of deleted graphical images. We leave the
“Active/Deleted” filter in place, right click in the empty space below it and select
“Term Library --> Graphics Files”. Note that the predefined filter “Graphics
Files” is populated with expressions that will identify graphics images by their
extensions. This set of expressions can be further adjusted to include or
exclude files depending on the examiner's preference.

Barry J. Grundy 186

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

File Edit

(File List | Filter |

[x]]
| Deleted Files Only % | -
| Filenatme = || must match S H regular expression =
Expression: | .art§|.bmp$|.gifs| jpeqs|.jpgs|.png$| 1| Thumbs.db | [¥] lgnore Case —

-

[Creve | Ly |

Two Filters in place: Active/Deleted and Graphics Files

After applying the above stacked filters, our file listing is paired down to
only deleted graphics files.

File Edit

| File List | Filter |

2 of 113 Files Shown

[% dy Documents/My Pictures/bandit-streetorrackZ 005058 jpg 1094 KB
% /My Documentsiby Picturesfighteramaz005-hand jpg 163.3 KB

UKL

Filtered for deleted graphics files

SMART Filtering — Viewing Graphics Files

SMART has a built in graphics viewing capability that allows you to view
images in a separate window. Thumbnail images can be browsed or reviewed
using a configurable slide show function. Individual files can be selected for
viewing, or groups of files can be displayed together.

To illustrate this capability, let's load the Graphics Files filter, by itself,
from SMART's filter term library. Note that filters can be cleared from the filter
list by clicking on the small box with the “X” in the top right hand corner of the
filter definition.

Barry J. Grundy 187

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Setting the Graphics filter by itself

The resulting file list shows us all the graphics files (by extension, from
our filter expression) within the selected partition (NTFES partition at sector
offset 59, from the main SMART window). Left click on the top file to select it,
then shift+left click on the bottom file to select the entire list. Right click on the
selected area, and go to “View --> As Graphic Data’.

File List: ntfs_pract (Sector 59)

[/My Pictures

= - =

15

Fon - !

5 §

5 h..

B :] g

5

B t 5.0 .
e

Select the entire list and right click to access the view menu

Barry J. Grundy 188

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

This will automatically open the graphics catalog. Also note that
selected files can be hashed, exported or have detailed information displayed.

1-21 Pl
1
| #5 #5 #7 #3 #4
L= | [imighterama2005-band jm pyanhordena jpg Suprmike2 jpg uzbanl 1 -rheink2002 jmzhand 7 -rheinb2002.
~|[«]] [| [«]»
fMy Documents/My Pictures/dsac806ad6501 7dd71e3362581c4713_refined.jpy m |§| H .
£a0x250 JPEG: 12,143 colors.

(" R1 Raptor GT2 Series -@:@

galaxy grey - bleck

SMART's built in Graphics Viewer

From this window, the files can be browsed by pointing and clicking, or
viewed via the slide show mentioned earlier. The slide show speed is set under
the “File --> Preferences” dialog in the main SMART window. Files of particular
interest can be “flagged” and marked with comments.

SMART Searching

In addition to the filtering capability, SMART has a powerful search
function. As with most SMART commands, this one is also accessed through
the right click menu.

To illustrate SMART's searching ability, we will duplicate our string
search within the able2.dd image. Recall in Sleuthkit Exercise #2 we searched
our disk image for the simple string “cybernetik”. We will do the same here,
and compare the output. First we must add our able2.dd image to our current

Barry J. Grundy 189

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

case in SMART's main screen. Alternatively, you can open another case and
add the image there.

Once the image has been added, from the main Case screen, right click
on the able2.dd image and select “Search”. We are clicking on the image entry,
not on any particular partition, remember we want to search the entire image.

File Cases Log Utilities Help

(Storage Devices | Case: NTFS Practical

[) IMAGES

?;".n. ntfs_pract (500.00 ME)
“1 frootExercises/MNTFS_Practical/ntfs_pract.dd
Unallocated Data (9.5 KE)
ntfs_pract (Sector 0) I I
s HPFSINTFS (7) Partition (433.51 MEB) F5: NTFS (MEW WOLUME)
B pifs_pract (Sector 59 :
Unallocated Data (470.0 KE)
ntfs_pract (Sector 1,023,060)
Eﬁ;,} able? (329.81 ME)

KIE

_,.-| frootExercisesiableziahle?. dd mage i

Unallocated Data (785 KE) ,

ahleZ (Sectar 0 Filesystem b |
e Linux (83) Partition (4.95 ME) Copy... FS: EXT2
ey ghled (Sector 57) authenticate | -
BB L Genriooey D [jueces TR
s Linux Swap (82) Partition (32 15 b S2orch-
e ahlez (Sectar 112,860 Import Image. ..]
s Linux (83) Partition (24256 ME) F5: EXTZ

abled (Sector 173,695)

F
k4

In the resulting search window, right click again on the empty space and
select “Add New Term --> Simple Term”. Note that the search function also
comes with an extensive library of search terms available to assist an examiner
in finding common artifacts. In the resulting term box, type “cybernetik”.

Remember that we are searching the entire disk for this string, just as we
did in the previous Sleuthkit exercise.

Barry J. Grundy 190

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Searching able2 + - 0O X

O D o e

ahleZ (329.41 MEB)
frootfExercisessablezrahles dd

Match Regex: | cybemetik] | (4] Ignare Case

-

-
-
-

| cancel | \ Search |

When the search is started, you are presented with a progress indicator.

Show Tasks: | Current Tasks ¢|

ID@[Searching: able?

cybernetik 4

147.31 ME of 329.51 MB|

Progress indicator

The results are then displayed:

(TR Searching able2 4 _0OXx

Uging 100.0% - 329.81 MEato Datw Filter: pone

ablez (323.81 ME)
frootExercises/ablez/anle2. dd

ahleZ Offset: 0xa12851 (10561617) [10 B Selected] [* |
| sun. ¢ oand SaintStat 2.0 *tmpdated by Cybernetik for limme rootkitst +/fdnclude <sys/iis

ahbleZ Offset: Ox34hec0l (35307264) [10 B Selected] |

o o o o ... Cybernetik prowdly presents, . & N

ahbleZ Offset: 0x34c0236 (553123501 [10 B Selected)

zapped vsers ebe, DL0THER STUFF:Emzil: cybernetikéroym. alias netiFinger: cybernetikonym. 3

ahleZ Offset: Ox34c0257 (55312983) 10 B Selected] [

ail: cybernetikBnym. alias netiFinger: cybernetikBnym. alias. netizin still waiting to seqsy

Search hits showing offset to the hit and highlighted context

As with our previous able2.dd search exercise, we have four hits. Review

the output of our grep string search of able2.dd on page 147. Upon
examination, we see the these are the same four hits. The offsets provided by
our original grep command and SMART differ slightly as a result of how the

Barry J. Grundy 191

v.3.78

The Law Enforcement and Forensic Examiner's Introduction to Linux

offsets are calculated. Recall that grep works on lines of output, while SMART
does not. The hits, however, are the same.

We can right click on the first search hit and view as raw data, providing
us a hex view of the search hit in context. Compare this output with output of

our xxd command on page 148.

Yieny Help

Using 100.0% - 329.61 HE at0

Diate. Filter: Mone

o ahle? (329.91 ME)
‘ froot'Exercisesfablegrahlesd dd
Cursor Offset (Alt+C): 10,561,617 Selection (Alt+5): 10 B at 10,561 617
010561504 00 00 OO 00 00 00 00 00 00 00 00 00 00 o0 00 o0 =
010561520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oo =]
010561536 2f 2z Oa 20 2a 09 66 69 T8 65 T2 2e 63 Oz 20 Za | /*. * fixer.c. * [
010561552 | 09 62 79 20 49 64 65 66 69 T8 20 0z 20 2a 09 69| by Idefix . *. 1 [
010561568 | 6e 73 70 69 72 65 64 20 &f 6e 20 T3 75 6d 2e 63 |nspired on sum. c
010561584 | 20 61 ce A4 20 53 61 69 6e T4 53 T4 61 T4 20 32 | and SaintStat 2
010561600 | 2e 30 Oa 20 22 09 75 70 64 61 74 65 64 20 62 79| . 0. * updated by
N1056l1ele ED?Q B2 65 Y2 6e 65 T4 B9 Bh 20 66 &f TE 20 Eybernetik for
010561632 6o 69 Be 75 T8 20 T2 6f 6f 74 6h 69 74 Oa 20 2a | linux rootkit. *
010561648 | 2f Oa Oa 23 69 Ge 63 6c TH 64 65 20 3c T3 79 T3 | /. . #include <sys
010561664 | 28 74 79 70 65 73 2e 68 Je Oa 23 69 6e 63 6o 7L | ftypes by #inclu
010561680 |64 E5 20 3c 73 73 73 2f 73 74 61 T4 Ze 68 3e Oa | de <sys/stat he.
010561696 | 23 €9 Ge 63 6c TE 64 65 20 3c 73 79 73 2f T4 69 | #include <sys/tl
010561712 &6d 65 Ze 68 3e Oa 23 69 6 63 6c 75 A4 65 20 3¢ | me. ke #include «
010561728 | 73 74 64 69 6f 2e 68 3e Oa 23 69 6e 63 6o 75 6d | stdio hr #inclod
010561744 | 65 20 3¢ 75 6e 69 T3 74 64 Ze 68 Je Oa 23 69 6e | & <unistd hr #in
010561760 | 63 6 75 64 65 20 3c 73 T4 T2 609 6e 67 2e 68 3e | clude <string. h:
010561776 | O0a Oa Bd 61 69 Ge 20 28 61 T2 67 63 Zc 61 72 67| . .main (argec, arg
010561792 | T& 29 Oz 69 6e 74 09 61 T2 67 63 2b Oz 63 68 61 | w).int. argc;. cha |
010561808 | T2 09 2a 2Za 61 72 67 76 3b Oa 7h 02 09 75 e T3 | r. **argv;. {. . uns |
_r Standard Types |/ Date/Time Types r Complex Types |
signed Char (&7 signed Int64 (B387231318653696323
Unsigned Char |67 Unsigned Int64 | §387231318653696323
aigned Short| 31043 Float|6.66432e+22
Unsigned Short| 31043 Double |4.91018e+252
signed Int| 1700952387 Qctal Byte (07103
Unsigned Int| 1700952357 Binary Byte (01000011
Distniss
Hex View of our 1st hit
Barry J. Grundy 192

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Further information can be obtained if the search is started from a
particular partition rather than the physical image. Assuming that we
“studied” the file systems prior to our search, right clicking on one of our
search term hits, and selecting “File System --> Get File Info” provides us with
information derived from the file system the data located at that offset,
including the inode, file meta data, etc.

This is just a very brief overview of SMART's capabilities. The SMART
user guide provides far more detailed information. For example, we can use
SMART to loop mount the partitions read-only with a simple click and then
browse the file system in either a terminal or in the file manager of your choice.
This provides us the ability to use all our favorite Linux tools to search the
logical file system and display the information we need for our analysis. As
with all advanced forensic tools, SMART provides excellent session and Case
logging functions.

Barry J. Grundy 193

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

XI. Bootable Linux Distributions

For so many people, this is the meat and potatoes of what makes Linux
such a flexible operating system. Access to a bootable CD drive and the ability
to reboot the machine can now give us the power to run a full-fledged Linux
box without the need to install. For those who have not seen this in action, the
power you can get from a CDROM, or even a floppy disk is amazing. This is not
a complete list, but the following bootable distributions can give you some idea
of what'’s available to you. There are many MANY more bootable distributions
out there. Just do a Google search on “Linux bootable CD” for a sample.

Tomsrtbt - boot from a floppy

...Because there are those times when you just might need a floppy
rather than a CD. This small distribution is the definition of minimalist, and it
fits on one floppy. You get a decent set of drivers for NICs and file systems
(including FAT and NTFS). There’s a basic set of common Linux tools,
including dd and rsh or nc for imaging over net connections and more. The
installation (to a floppy) can be done in Windows with an included batch file.
The floppy holds a surprising number of programs, and actually formats your
1.44 Mb floppy to 1.722 Mb. Find it at http://www.toms.net/rb/

Knoppix - Full Linux without the install

This is a CDROM distribution for people who want to try a full-featured
Linux distribution, but don’t feel like installing Linux. It includes a full Linux
environment and a huge compliment of software. The CD actually holds 2GB
of software, including a full office suite, common network tools and just about
anything else you're likely to need all compressed to a CD sized image. Please
do not consider this a forensically sound bootdisk option. There are plenty of
better choices out there. But for a “gee, look what Linux can do” disk, Knoppix
is hard to beat. http://www.knoppix.net

SMART Linux - It’s bootable!

Smart comes in 2 different boot disk options now, providing an excellent
platform with an independently verified forensic tool for acquiring and analyz-
ing physical media. The two SMART Linux versions are a boot CD based on
Ubuntu and a boot CD based on Slackware. The hardware detection is excel-
lent. SMART’s bootable CD provides an environment that you can be sure is
forensically sound. It comes with a number of forensic tools pre loaded. We've
already had a glimpse of SMART’s capabilities. http://www.asrdata2.com

Barry J. Grundy 194

http://www.asrdata.com/SMART/
http://www.knoppix.net/
http://www.toms.net/rb/

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

Helix — Knoppix based Incident Response

Helix is a bootable CD with a decidedly network forensics feel to it.
When booted, it provides a Linux environment based on Knoppix that has been
modified for forensic use and provides a huge number of forensics and
network applications.

In addition to being a bootable Linux disk, Helix also provides a “Live”
Windows response kit. When placed in a running Windows machine, it will
provide tools that can be used for gathering volatile system data. A truly
diverse tool! The user guide for Helix is excellent, and gives a great overview of
some of the tools available on the CD. The Helix developers pride themselves
on providing a cutting edge CD with diverse sets of tools, and support for the
latest hardware. http://www.e-fense.com/helix/index.php

Barry J. Grundy 195

http://www.e-fense.com/helix/index.php

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

XII. Conclusion

The examples and practical exercises presented to you here are very
simple. There are quicker and more powerful ways of accomplishing what we
have done in the scope of this document. The steps taken in these pages allow
you to use common Linux tools and utilities that are helpful to the beginner. At
the request of many users, this guide has been expanded somewhat to
incorporate more advanced tools, and exercises more related to “real world”
scenarios.

Once you become comfortable with Linux, you can extend the
commands to encompass many more options. Practice will allow you to get
more and more comfortable with piping commands together to accomplish
tasks you never thought possible with a default OS load (and on the command
line to boot!).

I hope that your time spent working with this guide was a useful invest-

ment. At the very least, I'm hoping it gave you something to do, rather than
stare at Linux for the first time and wonder “what now?”

Barry J. Grundy 196

v.3.78 The Law Enforcement and Forensic Examiner's Introduction to Linux

XIII. Linux Support
Places to go for support:

Aside from the copious web site references throughout this document,
there are a number of very basic sites you can visit for more information on
everything from running Linux to using specific forensic tools on Linux. Here
is a sample of some of the more informative sites you will find:

Slackware. Just one of many Linux distro's.
http://lwww.slackware.com

Learn Slackware (Slackware Linux Essentials):
http://lwww.slackbook.org/

Sleuthkit Wiki
http://wiki.sleuthkit.org

The Linux Documentation Project (LDP):
http://www.tldp.org

Open Source Forensic Software:
http://lwww.opensourceforensics.org

Software:
http://sourceforge.net/

In addition to the above list, there are a huge number of user forums,
some of which are specific to Linux and computer forensics. One of my
favorite forums (with an open source specific board):

http://lwww.forensicfocus.com

IRC (Internet Relay Chat)
Try #slackware on the Freenode network (or other suitable channel for
your Linux distribution of choice). Many LinuxLEO readers have
commented on the enthusiastic help received in #slackware on general
Slackware and Linux questions.

A Google search will be your very best friend in most instances.

Barry J. Grundy 197

http://www.forensic/
http://sourceforge.net/
http://www.opensourceforensics.org/
http://www.tldp.org/
http://wiki.sleuthkit.org/
http://www.slackbook.org/
http://www.slackware.org/

	Legalities
	Acknowledgments
	Foreword
	A word about the “GNU” in GNU/Linux
	Why Learn Linux?
	Conventions used in this document
	I. Installation
	Distributions
	SLACKWARE and Using this Guide
	Installation Methods
	Slackware Installation Notes	
	Desktop Environment
	The Linux Kernel: Versions and Issues
	Configuring Slackware 12: 2.6 kernel considerations
	udev
	Hardware Abstraction Layer
	d-bus
	2.6 Kernel and Desktops

	“Rolling your own” - The Custom Kernel

	II. Linux Disks, Partitions and the File System
	Disks
	Partitions
	Using modules – Linux Drivers
	Device Recognition
	The File System

	III. The Linux Boot Sequence (Simplified)
	Booting the kernel
	Initialization
	Runlevel
	Global Startup Scripts
	Service Startup Scripts
	Bash

	IV. Linux Commands
	Linux at the terminal
	Additional useful commands
	File Permissions
	Metacharacters
	Command Hints
	Pipes and Redirection
	The Super User

	V. Editing with Vi
	The Joy of Vi
	Vi command summary

	VI. Mounting File Systems
	The Mount Command
	The file system table (/etc/fstab)

	VII. Linux and Forensics
	Included Forensic Tools
	Analysis organization
	Determining the structure of the disk
	Creating a forensic image of the suspect disk
	Mounting a restored image
	Mounting the image using the loopback device
	File Hash
	The Analysis
	Making a List of All Files
	Making a List of File Types
	Viewing Files
	Searching Unallocated and Slack Space for Text

	VIII. Common Forensic Issues
	Handling Large Disks
	Preparing a Disk for the Suspect Image
	Obtaining Disk Information

	IX. Advanced (Beginner) Forensics
	The Command Line on Steroids
	Fun with DD
	Splitting Files and Images
	Compression on the Fly with DD
	Data Carving with DD
	Carving Partitions with DD
	Determining the Subject Disk File System Structure
	DD Over the Wire

	X. Advanced Forensic Tools
	Alternative Imaging Tools
	dc3dd
	ddrescue
	Bad Sectors - ddrescue
	Bad Sectors – dc3dd
	Bad Sector Acquisition - Conclusions

	LIBEWF - Working with Expert Witness Files
	Sleuthkit
	Sleuthkit Installation and System Prep
	Sleuthkit Exercises
	Sleuthkit Exercise #1 – Deleted File Identification and Recovery
	Sleuthkit Exercise #2 – Physical String Search & Allocation Status
	Sleuthkit Exercise #3 – Unallocated Extraction & Examination
	Sleuthkit Exercise #4 – NTFS Examination: File Analysis
	Sleuthkit Exercise #5 – NTFS Examination: ADS
	Sleuthkit Exercise #6 – NTFS Examination: Sorting Files
	Sleuthkit Exercise #7 – Signature Search in Unallocated Space
	SMART for Linux
	SMART Filtering
	SMART Filtering – Viewing Graphics Files
	SMART Searching

	XI. Bootable Linux Distributions
	Tomsrtbt - boot from a floppy
	Knoppix - Full Linux without the install
	SMART Linux - It’s bootable!
	Helix – Knoppix based Incident Response

	XII. Conclusion
	XIII. Linux Support
	Places to go for support:

