
State of Mobile Linux

Juha-Matti Liukkonen, Jan 5, 2011

1

Contents

Why is this interesting in a Qt course?

Mobile devices vs. desktop/server systems

Android, Maemo, and MeeGo today

Designing software for mobile environments

2

Why is this interesting in a Qt course?

3

Rationale

Advances in technology make computers mobile

Low-power processors, displays, wireless

network chipsets, …

Laptops outsell desktop computers

High-end smartphones = mobile computers

Need to know how to make software function

well in a mobile device

Qt is big part of Symbian & Maemo/MeeGo API

4

iSuppli, Dec 2008

Nokia terminology

Developing software for mobiles

Android smartphones

Eclipse, Java

Symbian smartphones

NetBeans / Eclipse, Java ME

Qt Creator, C/C++

Maemo / MeeGo smartphones

Qt Creator, C/C++

5

Of particular interest
in this course.

In desktop/server computing:
Java :== server

C/C++ :== desktop

Qt was initially developed
for desktop applications.

Mobile devices today are
more powerful than the
desktops 10 years ago.

The elephant in the room

In 2007, Apple change the mobile world with the

iPhone

Touch user interface, excellent developer tools,

seamless services integration, …

Modern operating system, shared with iPod and

Mac product lines

Caught “industry regulars” with their pants

down

Nokia, Google, Samsung, et al – what choice do

they have? Linux!

6

We don’t talk about the iPhone here.

iPad “killed the netbook”

In 2010, Apple introduced another

mobile game changer

iPad = basically, a scaled-up iPhone with a

10” touch screen

Bigger case = can fit bigger battery, for

~10 hours of intensive use

7,5 million sold as of Sep 30, 2010

Phenomenal netbook sales growth fizzled

7

NPD, Morgan Stanley
Research, 2010

Apple, 2010

App ecosystems

Powerful mobile computers can run variety of

software

Dynamic availability of applications to provide

added value over device lifetime

Devices become multi-purpose and adaptable

Voice call functionality a secondary feature

New software design challenges

New user interaction models

Preservation of battery

8

Nokia was ahead of its
time with the Communicator
concept back in 1996.

Mobile device constraints

Mobility = situations change

May lose network coverage

May run out of battery

Software needs to adapt to situation at hand

Mobility = limited resources

CPUs, GPUs not as fast as on desktop systems

Smaller screens, different input devices

Limited amount of battery power

9

Network connections error out.
Your app dies while writing to a file.

Your app is frozen to let a call through.

Cross development

Cannot compile software in the target device

Not enough memory, disk space, CPU power

Poor input/output devices for development

Must use a cross-compile environment

SDK = Software Development Kit

Build software in e.g. QtCreator, compile with

SDK tools, install & run in the target device

10

Debugging software
in target is often a
bit tricky. Most SDKs
come with a device
emulator.

Mobile Linux distributions

11

Linux Distribution

Linux is the operating system kernel

Deals with hardware abstraction

A distribution is a managed collection of

software, including the kernel

Device drivers, middleware, user applications

Comes with distributor-defined default settings

and applications

Often optimized for specific use(s)

E.g. Ubuntu, Red Hat Enterprise Linux, Maemo

12

Mobile Linux distributions

Maemo

Nokia’s Linux distribution for Internet tablets

and high-end smartphones

Powers the N770, N800, N810, N900

Android

Google’s Linux distribution for Internet tablets

and smartphones

Powers many HTC devices, Nexus One, etc.

13

Mobile Linux distributions

OpenEmbedded

Open source project

Best suited for custom adaptations to very small

devices

MeeGo

New kid on the block

Combines Intel’s Moblin netbook Linux and

Nokia’s Maemo Linux

First MeeGo devices out in fall 2010

14

Android details

Uses custom Linux kernel

Google maintains a set of Android patches

Applications developed using Java

Google’s custom Dalvik Java VM

6 versions in active use

1.5, 1.6, 2.0, 2.1, 2.2 and now 2.3

Used in various smartphones by HTC, Google,

Motorola, LG, etc.

15

There is also a Native
Development Kit (NDK)
for building native Linux
applications.

The devices have a bit
different resolutions and
feature sets.

Android architecture

16

Android points of interest

Custom C library

C library = system calls (interface to kernel),

POSIX & ANSI standard library routines

Linux standard is glibc, which is a bit bloated

Android has a stripped down libc

Compatibility issues for generic Linux code

Custom application installation

Apps bundled into .apk “Android packages”

17

Android points of interest

Programming model

Activity

● Impements an application view

Service

● Background program with no UI

Broadcast receiver

● Listens for e.g. battery notifications

Content provider

● Shares data from an app

18

Android and Qt

Project Lighthouse = Qt for Android

Project ongoing… not ready for prime time yet

Some limitations of Android Native SDK (NDK)

cause problems

Should eventually allow Qt to be the universal

(mobile) Linux toolkit!

Google is not very supportive ;-)

19

Maemo details

Uses standard Linux kernel

Applications developed using Qt, C/C++

Maemo 4 & 5 are GTK based, but even there Qt is the

recommended development toolkit

Maemo 4 used in Nokia N800 tablet (deprecated)

Maemo 5 used in Nokia N900 smartphone

Maemo 6 this fall -> MeeGo

20

M
a
e
m

o
 5

 a
rc

h
it

e
c t

u
re

21

Maemo points of interest

Very regular Linux in most ways

Debian based, uses dpkg & apt-get

Uses glibc, gstreamer, X.org, etc.

User interface based on Hildon/GTK+

Clutter backend for fancy effects

Qt natively supported

Qt apps for Maemo 5 have the Maemo look &

feel, support touch input, etc.

22

Nokia SDK = QtCreator +
SDKs for Symbian/Maemo

MeeGo details

Uses standard Linux kernel

Applications developed using Qt, C/C++

Replaces both Moblin from Intel, and Maemo

from Nokia

Some products released already

Alpha quality 1.0 release May 2010

Beta quality 1.1 release Oct 2010

Product quality 1.2 release Apr 2011

23

MeeGo architecture

24

MeeGo points of interest

Mostly regular Linux

Glibc, gstreamer, ALSA, etc.

Not based on any existing distribution, but uses

rpm & zypper for package management

User interface modules separated from base

platform

Different user interaction models for different

use scenarios

Qt is the primary application interface

25

MeeGo points of interest

UX modules

Handheld: touchscreen (meegotouch toolkit on

top of Qt)

Netbook: keyboard/mouse

Connected TV: remote control

In-Vehicle Information: touchscreen, joystick

Reference applications for each UX model

System vendors can customize as needed

26

MeeGo points of interest

Stable API

Any MeeGo application can run on any MeeGo

certified system

Main part of API is Qt (Core, Gui, Mobility, …)

Also: gstreamer, sqlite, ALSA, D-BUS interfaces

to various frameworks, etc.

Goal is to encourage an App Store ecosystem

rivaling Apple

27

Why MeeGo is interesting to us

Only credible challenger to Android

Backed by Nokia -> direct impact to Finnish

software development scene

Innovative architectural solutions

Aims to become the “industry standard” Linux

for modern embedded systems

Will drive Qt development in mobile space

28

You can participate
in building MeeGo:
go to meego.com
and become active!

Participate to MeeGo!

Go to meego.com and register as a developer

Participate in community working groups

Discuss in #meego at freenode

Contribute code, documentation, tests

Gain reputation, become a component

maintainer

Steering group meetings in #meego-meeting

Help us create the future of mobile Linux!

29

Developing software for mobile Linux

30

Software design considerations

Mobile environment constraints

Limited battery power

Limited CPU power

Limited screen size

Changing situations

Not that difficult to work with, once you know

what to avoid

Mobile optimized software runs fast on higher

end hardware

31

Design your app
for a CPU from 1990,
graphics from 2005,
but use modern tools
and techniques.

Limited battery power

Typical smartphone battery is around 1300-

1500 mAh

An ARM Cortex A8 @ 600 MHz draws 300 mW -

an Intel XEON @ 3 GHz draws 130W

Software must do as little as possible

Must not poll for network traffic, user input,

ambient light sensors, …

Must not update the screen when in background

Use platform services for notifications

32

Applications must
become context
aware.

Tools: powertop

33

Limited CPU power

Desktop machines today use 2-4 CPU cores of 2-

3 GHz each (4x3 GHz)

Server machines have 3-4x that

Netbooks and smartphones have 1-2 cores of

0.5-1 GHz

Level of parallelization is very different

Maximum throughput is very different

Efficient algorithms work on smartphone level

CPUs, and scream on high-end computers

34

Tools: htop

35

Limited screen size

Laptops may have 17”, 1920x1200 screens

Netbooks have 7-13”, max 1280x800

Smartphones have 3-4”, max 860x480

Designing a scaling application UI is hard

Dialogs designed for 860x480 may look tiny on

1920x1200

Dialogs designed for 1920x1200 may simply not

fit in 860x480

Also, what is the input mechanism?

36

Changing situations

May lose network coverage

Applications must degrade gracefully

May start to run out of power

Must absolutely minimize what apps do

Must survive power outages gracefully

Incoming phone call

Applications must yield immediately to allow

the high priority task to run

37

You always do check
for error values from
API calls, right?

Database transactions
and journaling file sys-
tems are your friends.

User interaction

Device rotation

Mobile devices often have accelerometers – can

tell whether it is in landscape or portrait mode

Applications should register for orientation

change notifications and re-layout accordingly

Input methods

Hardware keyboard, virtual keyboard, finger

input, Bluetooth keyboards and mice, …

Extra controls such as microphone buttons

38

Catching rotation on Maemo

39

 MyReceiverClass * receiver = new MyReceiverClass(this);
 QDBusConnection systemBus = QDBusConnection::systemBus();
 systemBus.connect("com.nokia.mce",
 "/com/nokia/mce/signal",
 "com.nokia.mce.signal",
 "sig_device_orientation_ind",
 receiver, SLOT(orientationChanged(QString)));

MyReceiverClass inherits QObject, and
implements slot orientationChanged().

DBus is a message
passing system.

MCE is the Mode Control
Entity (a system process)
in Maemo.

When MCE sends the sig_device_orientation_ind
via the system message bus, your object’s slot
orientationChanged() will get called with argument
“portrait” or “landscape”.

Memory management

Memory leaks cause device to reboot

User will not like this! (user = you)

Careful weeding out of dynamic memory

allocation problems is needed

Use QObjects, tools such as valgrind

Limited amount of memory in device

Swapping is slow and expensive power-wise

Use as little memory as you can, free memory

when not needed

40

Arguably, Java is better
than C/C++ in this regard
as it handles memory
deallocation automatically.

Tool: valgrind

Supports x86,

older ARM chips

Full ARMv7 support

coming soon

Multiple GUI front-

ends

41

Multitasking

Running multiple applications simultaneously

requires special care

You run out of memory, and device reboots

Background apps eat all your CPU, and you

can’t answer phone calls

iPhone OS just tells your app it’s about to be

killed

Your app must save state information to disk, so

that it can resume smoothly when restarted

42

This is clever,
because only
one app at a
time is in memory.

Multitasking

Android does automatic suspend/resume

Stores idle app state on disk automatically

Reloads app state when app is resumed, which

causes occasional stalls

Maemo/MeeGo does regular Linux multitasking

cgroups to prioritize process groups in memory

Uses swap to extend physical memory, which

causes occasional stalls

43

Android 2.2 has
a task manager,
where you can kill
idle apps by hand.

User interface design

Mobile design patterns

Mobilize, Don’t Miniaturize

The Carry Principle

Context Sensitivity

New research coming out all the time

Including 3D interfaces in 1-2 years

Tricky to combine 3D and touch…

44

Multiplatform applications

Qt is supported “everywhere”

Encourages creation of multiplatform

applications

But: even if the core application works

everywhere, the user interface may not

#ifdef statements in code to instantiate

different UI code for different UX environments?

QtMobility APIs to query system features

45

Web widgets

WebKit is the standard web runtime (WRT)

Provided by Android, Symbian, Maemo/MeeGo

Differences in JIT support

Platform service interfaces visible in JavaScript

Applications as widgets run in a WRT process

context

Similar considerations as for native applications

Often possible to embed to native applications,

sometimes just use in homescreen etc.

46

47

