
1

SERIOUS ABOUT SOFTWARE

Qt Quick – Overview and basic GUI

Timo Strömmer, Jan 3, 2011

Contents

• Quick start

• Environment installation,

• Hello world

• Qt Quick overview

• Qt Quick components

• QML language overview

• Qt modules overview

• Programming with QML

• Basic concepts and GUI elements

QUICK START

Creating a hello world project with QtCreator

3

Installation

• Qt SDK mess

• http://qt.nokia.com/downloads/downloads

• Latest Qt meant for desktop

• http://www.forum.nokia.com/Develop/Qt/

• Meant for mobile devices (but not desktop)

• Only ”preliminary support for Qt 4.7”

• Will be merged into one product in the future

4

http://qt.nokia.com/downloads/downloads
http://qt.nokia.com/downloads/downloads
http://qt.nokia.com/downloads/downloads
http://www.forum.nokia.com/Develop/Qt/
http://www.forum.nokia.com/Develop/Qt/
http://www.forum.nokia.com/Develop/Qt/

Installation

• Install Qt 4.7 from Ubuntu repositories

• Needed, for running in desktop

• sudo apt-get install build-essential libqt4-dev

qt4-qmlviewer

• Download and install the forum Nokia

version of Nokia Qt SDK

• Run qtcreator

• ~/NokiaQtSDK/QtCreator/bin/qtcreator

5

Installation

• Select Help / About plugins from menu

• Enable QmlDesigner and re-start qtcreator

6

Installation

• Check Tools / Options that Qt libraries exist

• Rebuild debug helper for C++ development

7

Quick start

• Select File / New File or Project

8

Quick start

9

Quick start

10

Quick start

11

Quick start

• Run the program with Ctrl+R

12

Excercise

• Try it out, create and run a QML application

project

• Add some other text entries

• Optional: Add an image

13

QT QUICK

Overview

14

What is Qt Quick

• QML – a language for UI design and

development

• Qt declarative – Module for integrating QML

and Qt C++ libraries

• Qt Creator tools – Complete development

environment

• QML design and code

• C++ integration

• Packaging and deployment

15

QML overview

• JavaScript-based declaractive language

• Expressed as bindings between properties that

are structured into object tree

16

Objects

Properties
and their
bindings

QML overview

• Contrast with an imperative language

17

Property bindings are
statements that get evaluated

whenever property changes

Statements are
evaluated once

QML overview

• JavaScript / JSON, not XML

• unlike MXML (Flash), XUL (Gecko), XAML (.Net)

• But, has support for XPath queries, so can easily

integrate with XML-based web services

18

Qt Declarative

• Declarative module is a C++ framework for

gluing QML and C++ code together

• Integrating QML ”scripts” into C++ application

• Integrating C++ plug-in’s into QML application

• Still lacking some basics

• First official version with Qt4.7 (2010/09/21)

• GUI component project in development

• Buttons, dialogs etc.

19

Qt Creator

• Qt Creator integrates C++ and QML

development into single IDE

• QML designer for visual editing

• QML and C++ code editors

• Same code can be run at desktop or device

20

Qt Creator intro

• This is interactive part…

• QML editor

• QML designer

• Project management

• Session management

21

QML editor

22

QML designer

23

QML project properties

24

Session management

• File -> Sessions -> Session Manager

25

QT MODULES

Overview of what’s in there

26

Qt modules walkthrough

• Qt documentation integrated to QtCreator

• API reference -> Class and Function

Documentation -> All Qt Modules

27

Core module

• Frameworks discussed during this course

• Qt object model (QObject, QMetaObject)

• Strings (QString, QByteArray)

• Containers (QList, QMap, QHash, QLinkedList)

• Data models (QAbstractItemModel & related)

28

Core module

• Frameworks not discussed in this course

• Multithreading (QFuture & related)

• I/O devices (QIODevice, Qfile & related)

• State machines (QStateMachine & related)

29

GUI module

• ”Traditional” widgets

30

GUI module

• Graphics view

• Graphics items

• Graphics widgets

• Proxy widgets

• This course focuses on the

QML-side, not C++

graphics framework

 31

Network module

• Sockets, including secure ones

• QTcpSocket, QSslSocket

• Simple HTTP and FTP API’s

• QNetworkAccessManager

32

Multimedia modules

• OpenGL for 3D rendering

• OpenVG for 2D rendering

• Svg for processing vector graphics files

• Phonon multimedia framework

• Not in mobile devices

33

Scripting modules

• QtDeclarative and QtScript

• QtScript -> Basically QML without the

declarative parts

• Different C++ engines

• QtDeclarative gets the hype nowadays

34

Other modules

• XML

• SAX and DOM parsers

• XmlPatterns

• XPath, XQuery, XSLT, schemas

• WebKit browser engine

• SQL for accessing databases

35

Mobile development

• Mobility API’s are not part of standard QT

• GPS, contacts, calendar, messaging, etc.

• Latest release 1.1:

• http://qt.nokia.com/products/qt-addons/mobility/

• Symbian .sis packages available for download

• N900 package can be installed from repository

- apt-get install libqt4-mobility

• Works in Qt Simulator on PC

• QML integration in progress

36

http://qt.nokia.com/products/qt-addons/mobility/
http://qt.nokia.com/products/qt-addons/mobility/
http://qt.nokia.com/products/qt-addons/mobility/
http://qt.nokia.com/products/qt-addons/mobility/

QML PROGRAMMING

Basic concepts

37

QML syntax

• Based on ECMA-262 specification

• Operating environment differs from the usual

web browser

• DOM vs. QtDeclarative

• Supports v5 features (notably JSON)

• Declarative concepts added on top

• Quite a lot can be done without any ”scriptiness”

38

Components

• A QML document (.qml file) describes the

structure of one Component

• Component name is file name

• Name follows camel-case conventions

• Components have inheritance hierarchy

39

FunWithQML
extends Rectancle

Components

• An instance of a component is created

when the program is run

40

Creates FlipText and
MouseArea objects

as children of Rectangle

id property is used when
referencing instances

Components

• Internals of component are not

automatically visible to other components

• Component’s API is defined via properties,

functions and signals:

• Property - expression that evaluates to a value

• Function - called to perform something

• Signal - callback from the component

41

Properties

• Properties can be referenced by name

• Always starts with lower-case letter

• A property expression that references

another property establishes a binding

• Whenever the referenced property changes, the

bound property changes

42

Simple values

Bindings

Properties

• The basics of properties:

• id is used to reference an object

• list properties are a collection of elements

• default property can be used without a name

• The data list in following example

43

Properties

• Public properties are specified with

property syntax

• Value properties, for example:

• int, bool, real, string

• point, rect, size

• time, date

44

http://doc.qt.nokia.com/4.7/qdeclarativebasictypes.html

http://doc.qt.nokia.com/4.7/qdeclarativebasictypes.html

Alias properties

• Property alias exposes an internal property

to public API of component

45

Not working directly

Properties

• Properties can be grouped or attached

• Both are referenced with ’.’ notation

• Grouping and attaching is done on C++ side,

not within QML

46

All properties of Keys
component have been
attached to Text and

can be used by ’.’ notation

font contains a group of
Properties related to the

font of the text field

Signals

• A component may emit signals, which are

processed in signal handlers

• Signal handlers follow onSignalName syntax

47

Mouse click
signal handler

Signals

• Signals can be defined with signal keyword

48

Custom signal

Calling the signal

Custom signal handler

Functions

• A component may export functions that

can be called from other components

• Note: Not declarative way of doing things

• Destroys property bindings

49

QML ELEMENTS

Building a GUI

50

QML Item

• Item is a base for all GUI components

• Basic properties of an GUI item:

• Coordinates: x, y, z, width, height, anchors

• Transforms: rotation, scale, translate

• Hierarchy: children, parent

• Visibility: visible, opacity

• state and transitions

• Does not draw anything by itself

51

Basic visual elements

• Rectangle and Image

• Basic building blocks

• Image can be loaded from web

• Text, TextInput and TextEdit

• For non-editable, single-line editable and

multiline editable text areas

• And that’s about it

• Qt components project is in progress

52

Item layouts

• Relative coordinates

• Anchors between items

• Positioner objects

• Row, Column, Flow, Grid

53

Item coordinates

• Position is defined by x and y

• Relative to parent item

• Size is defined by width and height

54

x
y

width
height

Item coordinates

• z defines how overlapping areas are drawn

• Example in Coordinates directory

55

Item anchors

• Each GUI item has 6 anchor lines (+1 for text)

• Side anchors:

• top, bottom, left, right

• fill special anchor

• Center anchors:

• verticalCenter, horizontalCenter

• Text has baseline anchor

56

Item anchors

• Anchors may contains spacing

• Side anchors have margins

• topMargin, bottomMargin, leftMargin, rightMargin

• margins special value

• Center anchors have offset

• verticalCenterOffset, horizontalCenterOffset

• Example in Anchors directory

57

Positioners

• Four positioner types:

• Row lays out child items horizontally

• Column lays them vertially

• Flow is either horizontal or vertical

• Row or Column with wrapping

• Grid is two-dimensional

• Child item doesn’t need to fill the ”slot”

58

Positioners

• Positioners inherit from Item

• Thus, have for example anchors of their own

• Can be nested inside other positioners

• Positioners have spacing property

• Specifies the distance between elements, quite

similarly as margins of anchors

• Same spacing for all child item

• Example in Positioners directory

59

PROGRAMMING EXERCISE

Getting started with QML

60

Day 1 exercise - layouts

61

References

• JavaScript:

• https://developer.mozilla.org/en/JavaScript/

• QML elements:

• http://doc.qt.nokia.com/4.7/qdeclarativeelements.html

62

https://developer.mozilla.org/en/JavaScript/
https://developer.mozilla.org/en/JavaScript/
http://doc.qt.nokia.com/4.7/qdeclarativeelements.html

63

