
1

SERIOUS ABOUT SOFTWARE

Qt Quick – GUI programming with QML

Timo Strömmer, Jan 4, 2011

Previous day quick quizz

• What are the ways to lay out items?

• What is the purpose of id property

• Which colors are visible in following:

2

Contents – Day 2

• Dynamic object management

• Inline components

• Dynamic loading

• Building fluid user interfaces

• Animations

• States and transitions

• User interaction

• Mouse and key

• Interactive containers

Contents – Day 2

• Adding data to GUI

• Data models

• Views

• Delegates

4

STRUCTURING QML
PROGRAMS

Component and script files, dynamic object loading

5

QML components

• Refresher from yesterday

6

FunWithQML
extends Rectancle

Component files

• The import statement can be used to

reference QML files in other directories

• Single file import

• Directory import

• Imported directory can be scoped

7

Script files

• The import statement also works with

JavaScript

• Can import files, not directories

• Must have the as qualifier

8

Property scopes

• Properties of components are visible to

child components

• But, considered bad practice

9

RedRect.qml

Main.qml

Property scopes

• Instead, each component should provide

an API of it’s own

10

Script scopes

• Same scoping rules apply to scripts in

external JavaScript files

• i.e. same as replacing the function call with the

script

• Again, not good practice as it makes the

program quite confusing

11

JavaScript scoping

• If script function declares variables with

same name, the script variable is used

12

getText uses local variable
run uses inherited one

Inline components

• Components can be declared inline

• Component element

• Useful for small or private components

• For example data model delegates

• Loader can be used to create instances

• Loader inherits Item

• Can be used to load components from web

• Example in ComponentLoader directory

13

Dynamic loading

• In addition to Loader, components can be

loaded dynamically via script code

• Qt.createComponent loads a Component

• File or URL as parameter

• component.createObject creates an instance of

the loaded component

• Parent object as parameter

• Qt.createQmlObject can be used to create QML

objects from arbitrary string data

• Example in ScriptComponents directory

14

BUILDING FLUID GUI

Overview of QML animations

15

Animations overview

• Animation changes a property gradually

over a time period

• Brings the ”fluidness” into the UI

• Different types for different scenarios

• Supports grouping and nesting

16

Animation basics

• All animations inherit from Animation base

component

• Basic properties (just like Item for GUI)

• Properties for declarative use:

• running, paused, loops, alwaysRunToEnd

• Can also be used imperatively:

• start, stop, pause, resume, restart, complete

17

Animation types

• Property value sources

• Behavioral

• Standalone

• Signal handlers

• State transitions

18

Animation types

• Property value source animation is run as

soon as the target object is created

• Animation provides the property value

• Animation on Property syntax

• Starts at from or current value

• Ends at to

• Lasts duration milliseconds

19

Animation types

• Behavioral animation

• Default animation that is run when property

changes

• Behavior on Property syntax

• No from or to needed, since old and new values

come from the property change

20

Animation types

• Standalone animations are created as any

other QML object

• Attached to target object

• Affects a property or properties

• from optional, to mandatory

• Need to be explicitly started

21

Animation types

• Signal handler animation is quite similar to

standalone animation

• Start is triggered by the signal

• Otherwise same rules

• Needs to be bound to target and property

• from optional, to mandatory

• More about state transitions in later slides

22

Animation types

• Example code in AnimationExamples

directory

• Uses NumberAnimation for various scenarios

23

Animation objects

• The actual animation is built from

animation objects

• PropertyAnimation and it’s derivatives

• NumberAnimation, SmoothedAnimation,

ColorAnimation, RotationAnimation, SpringAnimation

• Grouping and nesting

• SequentialAnimation, ParallelAnimation,

PauseAnimation

• GUI layout changes

• AnchorAnimation, ParentAnimation

24

Animation grouping

• Animations can be grouped to build more

complex scenarios

• SequentialAnimation is a list of animations that

is run one at a time

• ParallelAnimation is a list of animations that is

run simultaneously

• PauseAnimation is used to insert delays into

sequential animations

25

Animation grouping

• Sequential and parallel animations can be

nested

• For example, a parallel animation may contain

multiple sequential animations

• Example in AnimationGrouping directory

• Also uses ColorAnimation

26

BUILDING FLUID GUI

GUI states and animated state transitions

27

GUI states

• A state represents a snapshot of a GUI

28

Click on
”Edit”

Mouse on
file name

GUI states

• States are usually applicable at many

levels, regardless of problem complexity

• i.e. whole program vs. small trinket

• Transitions between states

• Response to user interaction or other events

• Many transitions may be run parallel

• May be animated with QML

29

GUI states in QML

• State framework built into QML:

• Every GUI Item has a state property, default

state and a list of states

• States are identified by name, default has no name

• Each State object inherits properties from

default state and declares the differences

• PropertyChanges element

• A state may inherit properties from another

state instead of the default

• extend property

30

GUI states

• Only one state is active at a time

• So, only properties from default and changes

from active state are in use

• State can be activated via script or with the help

of when binding

• Example in SimpleState directory

31

State transitions

• The transitions between states are declared

separately from the states

• List of transitions under the Item

• Quite similar to ParallelAnimation

• Although, doesn’t inherit Animation

• Example in SimpleStateTransition directory

32

State transitions

• All transitions are applied by default

• Can be scoped with from and to

• Both are bound to state name

• Transition overrides Behavior on <property>

• Transition animations are run in parallel

• Can be wrapped into SequentialAnimation

• Transition reversible flag might be needed

• Runs sequential animations in reverse order

33

State examples

• SequentialTransition directory

• Transitions quizz

• Mapping the AnimationGrouping example

into state framework

• StateExample directory

34

BUILDING FLUID GUI

Advanced animation topics

35

Layout animations

• The anchors of GUI Items can be changed

while application is running

• AnchorChanges element within a state

• Re-anchors the item to another valid target

• AnchorAnimation can be applied to state

transitions list to animate the changes

• Animates position and dimensions

• Some quirks involved

• Example in AnchorAnimations directory

36

Layout animations

• In addition to anchor changes, the parent-

child relationship of items can be changed

• ParentChange element within a state

• Changes the parent of an item

• Optionally also the coordinates, size and transform

• New relative coordinates

• Requires re-anchoring within new parent

• Example in ParentChange directory

37

More animation objects

• RotationAnimation for angles

• Configurable rotation direction

• Uses shortest path by default

• i.e. instead of going back from 359 to 0

• SmoothedAnimation for movement

• For example translations

• Can use velocity instead of duration

• So speed doesn’t depend on distance moved

• Easing curve built in

38

More animation objects

• SpringAnimation for spring-like movement

• spring, damping and mass

• Some examples in TransformAnimations

directory

• Although, note that these animations are not in

any way restricted to transformations

39

Easing curves

• Property and anchor animations may have

an easing curve

• Results in non-linear property change

• Quite a lot of pre-defined curves

• Check PropertyAnimation.easing.type for details

• Quick task:

• Open AnimationGrouping example and add

some easing curves

40

Script hooks

• StateChangeScript is run when a state is

entered

• Before state transitions are run

• ScriptAction within SequentialAnimation

• Can relocate a StateChangeScript call

41

Also, don’t forget
on<Property>Changed

hook from first day slides

Animation actions

• ScriptAction can also run without states

• Use script property instead of scriptName

• PropertyAction changes a property without

performing animations

• For example bool flags, z-value etc.

42

Animation notes

• Transformations (especially rotation) may

produce jagged lines (aliasing)

• Each Item has smooth property for anti-aliasing

• Smoothing is expensive operation

• Might be good idea to try disabling smoothing

for the duration of animations

43

See also ClockExample

USER INTERACTION

Handling mouse and keyboard input

44

Mouse and key events

• Mouse and keys are handled via events

• MouseEvent contains position and button

combination

• Posted to Item under cursor

• KeyEvent contains key that was pressed

• Posted to Item, which has the active focus

• If item doesn’t handle it, event goes to parent

• When accepted properties is set to true, the event

propagation will stop

• Events are signal parameters

45

Mouse input

• MouseArea element has already been used

in most of the examples

• Works for desktop and mobile devices

• Although, some signals will not be portable

• pressed property

• Any mouse button (pressedButtons for filtering)

• Finger-press on touch screen

• Position of events:

• mouseX and mouseY properties

• mouse signal parameter

 46

Mouse drag

• MouseArea can make an item draggable

• Works with mouse and touch

• Draggable items may contain children with

mouse handling of their own

• The child items must be children of the

MouseArea that declares dragging

• MouseArea inherits Item, so may contain child items

• drag.filterChildren property

• Example in MouseDrag directory

 47

Keyboard input

• Each Item supports keyboard input

• Keys and KeyNavigation attached properties

• Keys.on<Key>Pressed signals

• KeyNavigation.up / down / left / right properties

• Key events arrive to item with activeFocus

• Can be forwarded to other items

• Ignored if none of items is focused

• Setting focus property to true to get focus

48

Keyboard input

• FocusScope element can create focus

groups

• Needed for re-usable components

• Internals of component are not visible

• Invisible item, similarly as MouseArea

• One item within each FocusScope may have focus

• Item within the FocusScope, which has focus gets key

events

• Example in KeyboardFocus directory

49

Flickable element

• Scrollable container for other elements

• Drag or flick to scroll

• Scrollbars not built-in

• ScrollBar example available in QML documentation

50

height

width

contentWidth

contentHeight

Flickable element

• Flickable mouse events

• Drag events are intercepted by the flickable

• Mouse clicks go to children

• Similarly as MouseArea with drag enabled

• Control via interactive and pressDelay properties

• Example in FlickableExample directory

• Also contains StateChangeScript and

PropertyAction examples

51

Flipable element

• Flipable is a two-sided container

• Card with front and back items

• Must use Rotation transform to see the back

• Either via x or y axis, z won’t help

• Will not go upside-down via x-axis rotation

• States and transitions not pre-implemented

• Use for example RotationAnimation for transition

• Example in FlipExample directory

52

DISPLAYING DATA

Models, views and delegates

53

Data elements

• Data elements are divided into three parts

• Model contains the data

• Each data element has a role

• View defines the layout for the data elements

• Pre-defined views: ListView, GridView and PathView

• Delegate displays a single model element

• Any Item-based component works

54

Data models

• ListModel for list of data elements

• Define ListElement objects in QML code

• ListElement consists of roles, not properties

• Syntax is similar to QML properties (name: value)

• But, cannot have scripts or bindings as value

• Add JavaScript objects dynamically

• Any dictionary-based (name: value) object will work

• Works also with nested data structures

55

Data models

• ListModel is manipulated via script code

• append, insert, move, remove, clear

• get, set, setProperty

• Changes to model are automatically reflected in

the view(s) which display the model

• Although, changes via WorkerScript need sync

• Example in SimpleDataModel directory

56

Data models

• Other model types

• XmlListModel for mapping XML-data (for

example from web services) into QML view

• Uses XPath queries within list elements (XmlRole)

• FolderListModel from QtLabs experimental

• Displays local file system contents

• VisualItemModel for GUI Items

• VisualDataModel

• Can visualize Qt/C++ tree models

• May share GUI delegates across views

57

Data views

• QML has three views

• ListView displays it’s contents in a list

• Each element gets a row or column of its own

• Compare to Row or Column positioners

• GridView is two-dimensional representation

• Compare with Grid positioner

• PathView can be used to build 2-dimensional

paths where elements travel

58

Path view

• The PathView component declares a path

on which the model elements travel

• Path consists of path segments

• PathLine, PathQuad, PathCubic

• Start and end point + control points

• Each segment may have path attributes

• Interpolated values forwarded to delegate

• Example in PhotoExample directory

59

(10,10) (110,10)

(60,80)

Data view notes

• Note the lack of tree view

• Probably not good for small screens

• Repeater was used in earlier example

• Not a view, but can work with model and

delegate

• Or directly with GUI Items

60

Data views

• Interaction with views

• List and grid views inherint from Flickable

• Content can be scrolled (no scrollbars though)

• Path view uses drag and flick to move the items

around the path

• Delegates may implement mouse handlers

• Same rules as with Flickable nested mouse areas

61

GUI delegates

• A delegate component maps a model entry

into a GUI Item

• In VisualItemModel each entry is GUI item

• Delegate objects are created and destroyed

by the view as needed

• Saves resources with lots of items

• Remember dynamic object management slides at

beginning of this day

• Cannot be used to store any state

62

GUI delegates

• The delegate may access the list model

roles by name

• If role name is ambiguous, use model attached

property

• Special index role also available

• See delegate code examples from

SimpleDataModel and PhotoExample

63

View selection

• Each view has currentIndex property

• ListView and GridView have currentItem

• Represents the selected element

• View has highlight delegate

• Draws something under the current item

• Highlight moves with SmoothedAnimation

• Can be customized with highlightFollowsCurrentItem

• Example in ViewHighlight directory

64

FLUID GUI EXERCISES

Adding states and transitions

65

States and transitions

• Replace one of the original colors with a

button, which flips the color list over and

reveals more colors

66

States and transitions

• Add an area to left side, which slides in

when mouse is clicked on it

• Slides back when clicked again

67

DATA MODEL EXERCISE

Implementing a model and view

68

Data model exercise

• Add a ListModel to the central

area of day 1 exercise

• Fill with random names

• Generator example in

CourseDay2/ListArea.qml

• Add selection support to model

• When a color on right side is

clicked, tag the name with that

color

• Fade-in / fade-out the tag rectangle

69

70

