
1

SERIOUS ABOUT SOFTWARE

Qt Quick – Qt C++ programming basics

Timo Strömmer, Jan 7, 2011

Contents

• Qt C++ projects

• Project example

• Project file format

• Building projects

• Shared libraries

• C++ introduction

• Basics of C++ object-oriented programming

Contents

• Qt core features

• Shared data objects

• Object model

• Signals & slots

• Object properties

3

QT C++ QUICK START

Creating a C++ project

4

Quick start

5

Quick start

6

Quick start

7

Quick start

8

Quick start

9

Quick start

10

Quick start

11

Quick start

• Build with Ctrl+B, run with Ctrl+R

12

QT C++ PROJECTS

Project files overview

13

Qt project file

• A .pro file with same name as the directory

it sits in

• Processed by qmake to generate platform-

specific build files

14

Qt project basics

• Project name and type

• TARGET, TEMPLATE

• Project files

• SOURCES, HEADERS, FORMS

• Project configuration

• CONFIG, QT

15

Project templates

• Basic TEMPLATE types: app, lib, subdirs

• Executable files (console or GUI) are created

with the app type

• GUI is default, console needs CONFIG += console

• Libraries (static and shared) are created with lib

type

• Shared default, static needs CONFIG += staticlib

• Sub-directory template is used to structure

large projects into hierarchies

16

Project name

• Project TARGET specifies the output file

name

• TARGET = helloworld

• Affected by template and platform

• Executable name (name, name.exe etc.)

• Library name (libname.so, name.dll etc.)

17

Project files

• SOURCES are obviously needed

• HEADERS also, as they are processed by Qt

meta-object compiler

• UI form data (.ui files) are included with

FORMS directive

18

Sources and headers

• QtCreator updates the directives in .pro file

in most cases

• Add and remove but no rename

19

UI resources

• UI resource files are XML documents, which

are processed by uic compiler during build

• Generates C++ code from the resource and

integrates it into project

• No need to edit manually, use QtCreator

form editor instead

20

UI resources

21

Other resources

• Resource file specifies a collection of data

that should be bundled into the binary file

• For example pictures and QML files

• QtCreator can help add resources to

project

• Qt project file has RESOURCES statement,

which contains a list of .qrc files

• qrc file is a text file, which is parsed by resource

compiler during project build

22

Resource files

23

Resource files

24

Resource files

• After resource file has been created, add a

prefix into it and a file under the prefix

• Resource is identified with a path, quite

similarly as a file

• :/<prefix>/<resource-name>

25

QT C++ PROJECTS

Building a Qt project

26

Build from command line

• Run qmake in the directory, which contains

the .pro file

• Generates project Makefile

• Run make to build project

• Runs uic, moc and rc to generate ui_<form>.h,

moc_<class>.cpp and rc_<resource>.cpp files

• Compiles the sources to object .o files

• Links the object files together and with Qt

modules to produce the project target

27

Shadow builds

28

• Interactive part

• Qt creator project properties

• Shadow build output in file system

Excercise

• Open the helloworld example into GUI

designer

• Add a button widget

• Break the form layout first

• Change button object name to myButton

• Right-click and select Go to slot

• Selected clicked slot

• Add qDebug(”click…”); to code

• Build and run

29

QT C++ PROJECTS

Shared libraries

30

Shared libraries

• A shared library contains code that is

loaded once and shared by all executables

that use it

• Saves resources compared to a static

library, which is especially important in

mobile devices

31

Exporting from project

• In order to be used, a library needs to

provide an API

• Public headers are included into client project

• Client is linked against the library

• Project contents are exported with help of

makefiles

• Run make install in project directory

• Files and paths need to be specified first

32

Public headers

• Project file variables

• Project files support user-defined variables

• For example FOO = 5

• Variables can be referenced with $$<name>

• For example $$FOO would be replaced with 5

• Public headers can be separated from

private headers with help of a variable

33

Exporting from project

• INSTALLS directive is used to specify what

and where to install

• var.path specifies where to install

• Path is relative to project directory

• var.files specify what to install

• target.files is pre-defined to contain project binaries

34

Using exported libraries

• To use the library, a project needs to find

the exported data

• INCLUDEPATH for headers

• LIBS for libraries

• -L<path>

• -l<library-name>

• Examples in helloworld-console and

helloworld-library projects

35

C++ INTRODUCTION

Object-oriented programming with Qt/C++

36

C++ OOP basics

• A class defines the structure of an object

• Objects are created with new operator and freed

with delete operator

• When object is created, its constructor is called

and delete calls destructor

37

C++ OOP basics

• Object data must be initialized in

constructor and freed in destructor

• C++ has constructor initializer list

38

C++ OOP basics

• A class may inherit other classes

• Derived class gets all the properties of the base

class

• When object is created, base class constructor is

called first

• If base class constructor needs parameters, it needs to

be explicitly called from derived class initializer list

• Delete happens in reverse order, derived class

destructor is called first

39

Memory management

• Calling new reserves an area of memory

for the object

• The area will stay reserved until delete is called

or the program terminates

• If objects are not deleted, the program has

memory leaks

• Severity of the leaks depend on allocation size,

number of allocations and life-time of program

• Debugging can be costly

40

Memory management

• Objects allocated with new are reserved

from program heap

• Other option is to allocate objects from

program stack

• Stack variables are automatically deleted when

leaving the current program scope

• In general, anything based on QObject is

allocated with new

• Some exceptions of course…

41

Memory management

• Stack vs. heap

42

obj2

&obj

value
Stack

pointer

obj

Heap

Stack

Pointers and references

• An object allocated from heap is referenced

by a pointer or a reference

• Pointer is numeric value representing the

memory address of the object

• Usually 32 or 64 bits in size

• Dereference operator (*) returns the value

• Reference variable can be thought as being the

object itself

• Also note that the reference operator returns the

pointer of an object

43

Pointers and references

• Following prints out 10 (why?)

• Also note the memory leak

44

Pointers and references

• References are not usually used as

variables within functions

• Main use is constant reference for passing

objects into functions as input parameters

45

Unmodifiable

Modifiable

Unmodifiable,
but copied for

no benefit P.S. Never use for example
const int & parameter (why?)

Function return values

• Functions return value should always be

thought as a copy

• Thus, return heap-allocated objects by pointer

• And stack-allocated objects by value

• Never return a pointer to stack-allocated value

46

value is 25

Notes about const

• The const keyword indicates that

something is not modifiable

• const variables, const parameters, const

member functions

• A class member function which doesn’t change

the object should be marked const

• Possibilities for better compiler optimizations

• Class variables are const within a const function

47

const string can be
returned as it is copied

C++ hands-on

• Create a new Console Application project

• Add a class, which doesn’t inherit anything

• Add a QString member

• Add get and set functions for the member

• Note: Qt naming conventions don’t have get

- setFoo is matched by foo

• In main function, create instance from heap and

set the member to some string value

48

CORE FEATURES

Shared data objects

49

Shared data objects

• A shared data object doesn’t store the

object data by itself

• Instead, data is implicitly shared

• With copy-on-write semantics

• Easier to use that just pointers

• The object can be thought as simple value type

• Examples:

• Strings, images, collections

50

Implicit sharing

• In normal C++ an object is allocated and a

pointer to it is passed around

• Care must be taken that object is not deleted

while it’s still being pointed to

51

H e l l o ! \0

char *ptr

char *ptr

char *ptr

Implicit sharing

• In implicit sharing, a reference counter is

associated with the data

• Data pointer is wrapped into a container object,

which takes care of deleting the data when

reference count reaches 0

52

QString str

Data *
H e l l o ! \0 int ref = 2

Data

QString str

Data *

Implicit sharing

• Implicitly shared objects can be treated as

simple values

• Only the pointer is passed around

53

QString str

Data * C h a n g e \0 int ref = 1

Data

QString str

Data *

H e l l o ! \0 int ref = 1

Data

Terminology

• Copy-on-write

• Make a shallow copy until something is changed

• Shallow copy

• Copy just the pointer, not actual data

• Deep copy

• Create a copy of the data

54

Strings

• Two types of string

• UNICODE strings (QString)

• Byte arrays (QByteArray)

• In general, QString should be used

• UNICODE, so can be localized to anything

• Conversion between the two types is easy, but

might have unexpected performance issues

55

Strings and implicit sharing

• Strings are implicitly shared, so in general,

should be treated as a value

• Returned from functions like value

• Stored into objects as values

• Function parameters should use constant

reference, not value

• const QString &

56

String operations

• In Qt, a string can be changed

• Thus, differs from java immutable strings

• Modifying a string in-place is more efficient

(especially with reserve() function)

• However, some care must be taken to avoid changes in

unexpected places

57

String operations

• QString supports various operators

• ’+’, ’+=’, ’>’, ’<’, ’<=’, ’>=’, ’==’, ’!=’

• Also work with literals

• Character access with []

58

Console output

• Qt has qPrintable function, which should be

used when printing strings with qDebug

59

Generic containers

• List containers

• QList, QLinkedList, QVector, QStack, QQueue

• Usually QList is best for ordinary tasks

• QStringList for strings

• Associative containers

• QSet, QMap, QHash, QMultiMap, QMultiHash

• QMap for sorted, QHash for unsorted items

60

C++ templates

• Containers are based on C++ templates

• Type safety -> helps prevent errors

• Type of object is specified within angle brackes

• Only objects of specific type can be used

• Some examples:

• QList<QPicture>

• List of pictures

• QHash<QString,QObject>

• Name-to-object dictionary

61

List containers

• Lists are index-based, starting from 0

• Fast access if index is known, slow to search

• Adding and removing items

• append, insert, ’+=’, ’<<’

• Accessing items

• at, ’[]’

62

Foreach statement

• Can be used to iterate over lists

• Takes a shallow copy of the container

• If original container is modified while in loop,

the one used in the loop remains unchanged

63

Associative containers

• Associative containers are used to map

keys to values

• In QSet, key and value are the same

• QSet<String>

• Other containers have separate keys and values

• QHash<QString,QString>

• Normal versions have one-to-one mapping,

multi-versions accept multiple values for single

key

• QMultiMap<QString, QObject *>

64

CORE FEATURES

Object model and signals & slots

65

Object model

• Usual Qt program is based around a tree-

based hierarchy of objects

• Designed to help with C++ memory

management

• Based on QObject class

• Do not confuse with class inheritance

66

Object model

• A QObject may have a

parent object and number

of child objects

• Object without parent is

called a root object

• When an object is deleted,

it will also delete all it’s

children

67

QObject

QObject

QObject

QObject

QObject

Object model and GUI

• All GUI components inherit from QWidget,

which in turn inherits from QObject

• Thus, GUI widgets are also arranged into tree

hierarchy

• The root widget is a window

• Enabling / disabling or showing / hiding a widget

will also affect its children

68

Signals and slots

• Qt way of making callback functions simple

• Example cases

• What happens when user presses a GUI button

• What happens when data arrives from network

• Similar semantics as with Java listeners

• A signal is emitted, which results in a

function call to all slots that have been

connected to the signal

• i.e. onSignal: slot() in QML code

69

Signals and slots

• Code to support signal-slot connections is

generated by the moc tool when project is

compiled

• Special keywords are used, which are

interpreted by moc

• Q_OBJECT, signals, slots, emit

70

Special keywords

• Q_OBJECT keyword must be added to

every class that inherits from QObject base

class

• Tells moc to parse the class contents

• QtCreator complains if missing

71

Special keywords

• signals keyword is used to start a block of

signal definitions

• Signal functions are not implemented. Instead,

the code for them is generated by moc

• Signals can have parameters as any normal

function

• A slot that is connected to signal must have matching

parameter count and types

72

Special keywords

• slots keyword starts a block of slot

definitions

• Each slot is a normal C++ function

• Can be called directly from code

• Normal visibility rules apply when called directly

from code

• However, signal-slot connections will ignore visibility

and thus it’s possible to connect to private slot from

anywhere

73

Special keywords

• emit keyword is used to send a notification

to all slots that have been connected to the

signal

• Object framework code loops over the slots that

have been connected to the signal and makes a

regular function call to each

74

Connecting signals to slots

• Connections are made with

QObject::connect static functions

• No access control, anyone can connect anything

• Class headers are not needed if signal and slot

function signatures are known

• Component-based approach

• Components provide services

• Controller makes the connections between

components

75

Connecting signals to slots

76

Signals and slots

• Comparing Qt and Java

77

Trying it out

• Open the hellosignalslot example

• Build and run

78

What was done?

• The program event loop was created

• Note that new operator was not used

• Object was allocated on stack

• Stack variables will be automatically deleted at

the end of the scope they belong to

• In this case the scope is the main function

• Thus, delete is not needed

79

What was done?

• Two objects were created

• QCoreApplication object was assigned as the

parent object

• Thus, parent will delete them when it is deleted

• Note: timer and hello could also be

allocated from stack

• But parent must not be used in that case (why?)

80

What was done?

• Objects were connected together

• Note that timer and hello objects don’t

know anything about each other

81

What was done?

• Timer and event loop were started

• When event loop is active

• The timer gets an event from the system and emits

timeout signal after 10 seconds

• timeout signal is connected to the hello slot

• Hello slot prints something and emits helloSignal

• helloSignal is connected to event loop quit slot

• Quit slot stops the event loop and thus exec function

returns and program quits

82

Short exercise

• Open the hellosignalslot example that

presented in previous slides

• Change it so that it prints ”Hello” and

”World” with 5-second interval and quits

after the second print

83

CORE FEATURES

Object properties

84

Object properties

• All QObject-based classes support

properties

• A property is QVariant type, which is stored in a

dictionary that uses C-style zero-terminated

character arrays as keys

• i.e. name-value pair

• Properties can be dynamic or static

• Dynamic properties are assigned at run-time

• Static properties are defined at compile time and

processed by the meta-object compiler

85

Object properties

• Static properties are declared into class

header using Q_PROPERTY macro

• The above statement defines a property

• Type is qreal, name is rotation

• When read, rotation function is called

• When modified, setRotation function is called

• Changes are notified via rotationChanged signal

86

Object properties

• Properties are used in QML/C++ hybrid

programming

• Object properties are mapped into QML

• Monday’s topics

• QML plug-in’s

• Exposing C++ objects to QML

87

88

