symbio

SERTOUS ABOUT SOFTWARE

Qt Quick — Qt C++ programming basics

Timo Strommer, Jan 7, 2011

symbio

Qt C++ projects

e Project example
e Project file format
e Building projects

e Shared libraries

C++ introduction

e Basics of C++ object-oriented programming

symbio

Qt core features

e Shared data objects
e (Object model
e Signals & slots

e Object properties

<symbio-

Creating a C++ project

QT C++ QUICK START

Quick start <5Ymb|0>

2 @ HNew...

Subversion Checkout 4
- Qt
Qt Designer Form
Qt Designer Form Class
Qt QML File
Qt Script file
Qt Resource file
— Projects
B Import of Makefile-based Project
B QML Application
B Import of existing QML directory
B2 Empty Qt4 Project
[:Qt4 Gui Application
Code less. B Qt4 Console Application
Create more. & C++ Library
Deploy everywhere. [l Qt4 Designer Custom Widget

Creates a Qt4 Gui Application with one form.

Quick start <5Ymb|0>

D @ Qt4 Gui Application

Introduction and project location

This wizard generates a Qt4 GUI application project. The
application derives by default from QApplication and
includes an empty widget.

Name: | helloworld |

Code less. Create in: | /hometftilli/gtprojects | W
Create more.

Deploy everywhere.

_Next> | cancel

Quick start <5Ymb|0>

2 @ 0Qt4 Gui Application

Select required modules
Select the modules you want to include in your project.
The recommended modules for this project are selected
by default.
QtWebkKit
QtXmil
QtNetwork QtXmlPatterns
QtOpenGL Phonon
Qtsql QtMultimedia
Code less. Scrint ISupport
Create more. QEscrip Qu3supp
Deploy everywhere. QtScriptTools QtTest
Qtsvg QtDBus
<Back || Next> | Cancel

Quick start <5Ymb|0>

® @ Qt4 Gui Application

Class Information

Specify basic information about the classes for which
you want to generate skeleton source code files.

Class name: | Hellowidget |
Base cass: | QUNidOEE v
Header file: [hellowidget.h]
Source file: [hellowidget.cpp]
Code less. Generate form: i«
{raate mors. Form file: [hellowidget.ui]

Deploy everywhere.

Quick start <5Ymb|0>

© @ 0Qta Gui Application

Project management
Add to Project

Project

Add to version contro

Files to be added:

fhomestilli/qtprojects/helloworld/main.cpp
fhomestilli/qtprojects/helloworld/shellowidget.cpp
fhomestilli/qtprojects/helloworld/hellowidget.h
fhomestilli/qtprojects/helloworld/hellowidget.ul
fhomestilli/qtprojects/helloworld/shelloworld.pro

Code less.
Create more.
Deploy everywhere.

<Back || Finish || Cancel

Quick start <5Ymb|0>

5 © 0O Hello World - Qt Creator
File Edit Build Debug Tools Window Help
Projects

| - i helloworld
i helloworld.pro
- [Forms
L7 hellowidget.ui
— [& Headers
|n] hellowidget.h
- [Sources
le«] hellowidget.cpp
v Main.cpp

L

Projects |

Open Documents

Build Issues Search Results Application Output n Compile Output -

.’Il-.'.' ™
T . ¥ » l.-.. .I ..
N » 10

Quick start <5Ymb|0>

® & 6 hellowidget.ui - Hello World - Qt Creator
File Edit Build Debug Tools Window Help

Projects $ Y. = H X « # nhellowidget.ui N T T B[B & e H - | X
— [helloworld

Object
i@ helloworld.pro |:23 Double Spin Box s Hello - = Hellowidget | | Qwidget
— [Forms)] World label > Qlabel
_/ hellowidget.ui Q@ Time Edit e label_2 % Qlabel
- | Headers Fﬁ Date Edit
In] hellowidget.h fi@ Date/Time Edit
— [Sources & Dial
Debug |ew] hellowidget.cpp .
" les main.cpp @=n Horizontal Scroll Bar
.I" [i] Vertical scroll Bar
Projects

{}= Horizontal slider
‘f‘ Vertical Slider

— ispi id : -
Q} Label objectN... HelloWidget
Output Text Browser
Build | T Graphics view

enabled nd

+ geometry [(0, 0), 80 x 58]

Open Documents iy |12 Calendar + sizePolicy [Preferred, Preferred, 0...
hellowidget.ui LCD Number + minimu... loxo0

mm Progress Bar + maximu... 16777215 x 16777215

= Horizontal Line Sender Signal Receiver £ | sizelncre... 0x 0

Il Vertical Line + baseSize 0x0

@ QWebView palette Inherited

—) . [» 4+ font A [Sans, 10]

e T——— Action Editor = signals Slots Editor

[173 pathDefa _ndererfx ¥ g - cursor [% SN

v
.I Build Issues E Search Results Application Output Compile Output _ .
° o o

.'-‘ '.
@ & & 2 s ., .. - @
"i'. . »
"'+ s s o 0o 0 ©® o ® 11

Quick start <5Ymb|0>

¢ Build with Ctrl+B, run with Ctrl+R

helloworld ¢
Starting /hometillifgtprojects/helloworid/helloworld...

I8 Build Issues 28l Search Results QReIl-Vslsl[lo=11ls]gRe Vi1V 4@ Y Compile Output

"+ s s e o 0 ® o ® 12

<symbio-

Project files overview

QT C++ PROJECTS

Qt project file <symb|0>

®* A .pro file with same name as the directory
It sits in

® Processed by gmake to generate platform-
specific build files

Projects 2 ¥. & H X « % helloworld.pro
- i@ helloworld s
im helloworld.pro #
_ [Forms # Project created by QtCreator 2010-05-18721:13:40
. . #
L hellowidget.ui .
- | Headers
|n] hellowidget.h TARGET = helloworld
_ [Sources TEMPLATE = app
le«] hellowidget.cpp
|ex] Main.cpp SOURCES += main.cpp™
hellowidget.cpp
HEADERS += hellowidget.h .
FORMS += hellowidget.ul ®
. - @ ¢ " e, . B N »
' . . .
] - & - & o - .‘ []

s ¥ 14

Project name and type

e TARGET, TEMPLATE

Project files

e SOURCES, HEADERS, FORMS

Project configuration

e CONFIG, QT

symbio

15

symbio

Basic TEMPLATE types: app, lib, subdirs
e Executable files (console or GUI) are created
with the app type

GUI is default, console needs CONFIG += console

e Libraries (static and shared) are created with /ib
type

Shared default, static needs CONFIG + = staticlib

e Sub-directory template is used to structure
large projects into hierarchies

16

symbio

Project TARGET specifies the output file
name

e TARGET = helloworld

Affected by template and platform

e Executable name (name, name.exe etc.)

e Library name (/libname.so, name.dll etc.)

17

symbio

SOURCES are obviously needed

HEADERS also, as they are processed by Qt
meta-object compiler

UI form data (.ui files) are included with
FORMS directive

18

Sources and headers

<symbio-

® QtCreator updates the directives in .pro file

In Most cases

e Add and remove but no rename

Build Project "helloworld®
Rebuild Project "helloworld"

-t "helloworld”

Run gmake

Run

Close Project "helloworld"

Add Existing Files...
Set Build Configuration

Set Run Configuration

Ctri+B

- | helloworld
| helloworld.pro
- [Forms
L hellowidget.ui
— |l Headers

......

- |l Sou Open File

Show containing folder...

+ [hellowg Open With r.

+ i@ hellowdi EVERT

+ [I@ helloworra

19

symbio

UI resource files are XML documents, which
are processed by uic compiler during build

e Generates C++ code from the resource and
integrates it into project

No need to edit manually, use QtCreator
form editor instead

20

UI resources

Projects

- @ helloworld
| helloworld.pro
— [Forms
-* hellowidget.ui
— [l Headers
[n] hellowidget.h
- [Sources
le«| hellowidget.cpp
|ew] Main.cpp
- @ helloworld-console
| helloworld-console.pro
- [Sources
|ew] Main.cpp
+ [i@ helloworld-library
- @ helloworld-static
| helloworld-static.pro
- [E@ Headers

Open Documents
hellowidget.ui
helloworld-console.pro
helloworld-static.pro

k] | | n ™
12| Double Spin Box s Hello
@ Time Edit World
. L]]]

D © @ hellowidget.ui (~/qtprojects/helloworld) - gedi

File Edit View Search Tools Documents Help

|_;:1 Lﬁ"(}pen v li‘-'IISaw.nre- =

| 7 hellowidget.ui %

k?xml version="1.0" encoding="UTF-§"7>
=ui version="4.0"=
=class=HelloWidget</class=
=widget class="QWidget" name="HelloWidget"=
<property name="geometry"=>
<rect=
=x=0</¥%=
<y=0</y=
<width=88</width=>
<height=58</height=>
</rect=
</property=
=property name="windowTitle"=
<string=HelloWidget</string=

<property name="text"=

L] [™ ™ ™ . .

</property=
<layout class="0VBoxLayout" name="verticallayout"=
<item=

<widget class="QLabel" name="label"= »

21

symbio

Resource file specifies a collection of data
that should be bundled into the binary file

e For example pictures and QML files

QtCreator can help add resources to
project

e Qt project file has RESOURCES statement,
which contains a list of .grc files

e grc file is a text file, which is parsed by resource
compiler during project build

22

Resource files <symb|0>

- Version Control a
CVS Checkout
Git Repository Clone
Gitorious Repository Clone
Subversion Checkout
-t
Qt Designer Form
Qt Designer Form Class
Ot QML File
Qt Script file
{0t Resource file
- Projects
B Import of Makefile-based Project
Code less. B OML Application
Create more. B Import of existing QML directory
Deploy everywhere. M Empty Qt4 Project

[B T, TN N Y

Creates a Qt Resource file (.qgrc).

* + s s 00 @ P 23

Resource files <symb|0>

D @ New Qt Resource file

Choose the location

Name: | graphicsresources |

Path: |'eftillifqtpmject5fh ellographics | Browse... |

Code less.
Create more.
Deploy everywhere.

24

Resource files symbio

e After resource file has been created, add a
prefix into it and a file under the prefix

« ¢ hellographics.qrc = . .
! Lo [aoren v Clsave &
= |
¥ pics/lemonade.jpg [7 hellographics.qrc %

<RCC=
<gresource prefix="/"=
<file=pics/lemonade. jpg</Tile>
</gresource=
</RCC>|

® Resource is identified with a path, quite
similarly as a file

e :/<prefix>/<resource-name>

25

<symbio-

Building a Qt project

QT C++ PROJECTS

symbio

Run gmake in the directory, which contains
the .pro file

e (Generates project Makefile

Run make to build project

e Runs uic, moc and rc to generate ui_<form>.h,
moc_<class>.cpp and rc_<resource>.cpp files

e Compiles the sources to object .o files

e Links the object files together and with Qt
modules to produce the project target

27

Interactive part

e Qt creator project properties

e Shadow build output in file system

symbio

28

Excercise symblo

® Open the helloworld example into GUI

designer m
i | Break Layout |

e Add a button widget T !

¢ Break the form layout first

¢ Change button object name to myButton
Hello

e Right-click and select Go to slot
Werld myButton ; QPushButton
e Selected clicked slot Property Value

e Add gDebug(“click...”); to code

® Build and run

<symbio-

Shared libraries

QT C++ PROJECTS

symbio

A shared library contains code that is
loaded once and shared by all executables
that use it

Saves resources compared to a static
library, which is especially important in
mobile devices

31

symbio

In order to be used, a library needs to
provide an API

e Public headers are included into client project

e C(lient is linked against the library

Project contents are exported with help of
makefiles

e Run make install in project directory

Files and paths need to be specified first

32

symbio

Project file variables

e Project files support user-defined variables

For example FOO = 5

e Variables can be referenced with $$<name>

For example $$FOO would be replaced with 5

Public headers can be separated from
private headers with help of a variable

PUBLIC HEADERS += helloworldlibrary.h %
helloworld-1library global.h

HEADERS += $$PUBLIC_HEADERS *
hwlibprivate.h

33

Exporting from project symblo

® INSTALLS directive is used to specify what
and where to install

e var.path specifies where to install
e Path is relative to project directory
e var.files specify what to install

e target.files is pre-defined to contain project binaries

Name ¥ Size Type
TARGET = helloworld-library

- “bin 4 items folder
PUBLIC HEADERS += helloworldlibrary.h % & libhelloworld-library.so 9.9 KB | Link to shared library
helloworld-1ibrary global.h
J-9 libhelloworld-library.so.1 9.9 KB Link to shared library

A
public_headers.path = ../inc : T : :
public_headers. files = $$PUBLIC_HEADERS & libhelloworld-library.so.1.0 9.9 KB Link to shared library
target.path = ../bin libhelloworld-library.s0.1.0.0 9.9 KB shared library
INSTALLS += target ©
public_headers - | inc 2 items folder
helloworldlibrary.h 244 bytes C header

helloworld-library_global.h 300 bytes C header

symbio

To use the library, a project needs to find
the exported data

e INCLUDEPATH for headers

e LIBS for libraries INCLUDEPATH += ../inc

LIBS += -L../bin -lhelloworld-library

-L<path>

-I<library-name>

Examples in helloworld-console and
helloworld-library projects

35

<symbio-

Object-oriented programming with Qt/C++

C++ INTRODUCTION

-]
-nll. "o @ 36

symbio

A class defines the structure of an object

e Objects are created with new operator and freed
with delete operator

e When object is created, its constructor is called
and delete calls destructor

clas=s HelloWidget : pubklic QWidget

{ . HelloWidget: :HelloWidget (QWidget #*parent) :
m_TEEEE GWidget (parent),

e L ui (new Ui::HelloWidget)

| et {

HelloWidget (QWidget *parent = 0);

ui-rzetupli (this);
~HelloWidget () ; ui->setupli |)
protected: HelloWidget: :~HelloWidget
volid changeEvent (QEvent *e); {E onrags elloWidget ()
delete ui;

TUi::HelloWidget #*ui;

37

C++ OOP basics

® Object data must be initialized in
constructor and freed in destructor

e C++ has constructor initializer list

HelloWidget: iHelloWidget (QWidget
QWidget (parent) .
i(new Ui::HelloWidget)

ui-»setupli (this=s);

Ui::HelloWidget *ul; HelloWidget: : ~HelloWidget ()

symbio

*parent) :

38

symbio

A class may inherit other classes

e Derived class gets all the properties of the base
class

e When object is created, base class constructor is
called first

If base class constructor needs parameters, it needs to
be explicitly called from derived class initializer list

e Delete happens in reverse order,|derived class
destructor is called first

HelloWidgEt: iHelloWidget (QWidget *parent)
OWidget (parent),
ui(new Ui::HelloWidget)

39

symbio

Calling new reserves an area of memory
for the object

e The area will stay reserved until delete is called
or the program terminates

If objects are not deleted, the program has
memory leaks

e Severity of the leaks depend on allocation size,
number of allocations and life-time of program

e Debugging can be costly

40

symbio

Objects allocated with new are reserved
from program heap

Other option is to allocate objects from
program stack

e Stack variables are automatically deleted when
leaving the current program scope

In general, anything based on QObject is
allocated with new

e Some exceptions of course...

41

Memory management

® Stack vs. heap

i{
QObject *obj = new QObject():
Qobject obj2():
int value = 0;

¥

<symbio-

Stack

Stack
pointer

symbio

An object allocated from heap is referenced
by a pointer or a reference

e Pointer is numeric value representing the
memory address of the object

Usually 32 or 64 bits in size

Dereference operator (*) returns the value

e Reference variable can be thought as being the
object itself

Also note that the reference operator returns the
pointer of an object

43

Pointers and references symbio

® Following prints out 10 (why?)

e Also note the memory leak

s

int stackfillocatedInteger = 10;

int &integerReference = stackBlllocatedInteger;
int *heapillocatedInteger = new int;
*heapfllocatedInteger = 20;

integerRBeference = 5;
heapfllocatedInteger = &integerBeference;
ghebug ()

<< stackBllocatedInteger + *heapfllocatedInteger;

44

symbio

References are not usually used as
variables within functions

Main use is constant reference for passing
objects into functions as input parameters

Unmodifiable void MyClass::function{const Q5tring &strIn) {}
L vold MyClass:::function (Q5tring *striIn) {}
Modifiable void MyClass::function (QString &strIn) {}
vold MyClass::function (QS5tring strIn) {}

Unmodifiable,
but copied for
no benefit P.S. Never use for example
const int & parameter (why?)

45

symbio

Functions return value should always be
thought as a copy

e Thus, return heap-allocated objects by pointer

e And stack-allocated objects by value

Never return a pointer to stack-allocated value

vold anotherFunction()

{ int *sztupidFunction()
int someUselessVariable = 25; {
int wvalue = 5;
return &value;
int main(int argc, char *argv[])
{
int *value = stupidFunction():
anotherFunction () ;
ghebug () << *wvalue; Value is 25

46

symbio

The const keyword indicates that
something is not modifiable

e const variables, const parameters, const
member functions

e A class member function which doesn’t change
the object should be marked const

Possibilities for better compiler optimizations

Class variables are const within a const function

DE5tring MyClass: :stringGetter() const const string can be

{ . . .
return theString: returned as it is copied

47

symbio

Create a new Console Application project

e Add a class, which doesn’t inherit anything
e Add a QString member

e Add get and set functions for the member

Note: Qt naming conventions don’t have get

- setFoo is matched by foo

e In main function, create instance from heap and
set the member to some string value

48

<symbio-

Shared data objects

CORE FEATURES

symbio

A shared data object doesn’t store the
object data by itself

e Instead, data is implicitly shared

With copy-on-write semantics

e Easier to use that just pointers

The object can be thought as simple value type

Examples:

e Strings, images, collections

50

symbio

In normal C++ an object is allocated and a

pointer to it is passed around

Care must be taken that object is not deleted

while it’s still being pointed to

char *ptr

char *ptr

H

-

char *ptr

51

symbio

In implicit sharing, a reference counter is
associated with the data

e Data pointer is wrapped into a container object,
which takes care of deleting the data when
reference count reaches 0

QString str
Data *
QString str Data
- intref =2 |H |e |I I o |! \0

Data *

52

Implicit sharing

symbio

* Implicitly shared objects can be treated as

simple values

e Only the pointer is passed around

QString str

Data *

QString str

Data *

Data

intref=1 ! \O
Data

intref=1 e |\0

53

symbio

Copy-on-write
e Make a shallow copy until something is changed

Shallow copy

e Copy just the pointer, not actual data

Deep copy

e (Create a copy of the data

54

symbio

Two types of string

e UNICODE strings (QString)

e Byte arrays (QByteArray)

In general, QString should be used

e UNICODE, so can be localized to anything

e (Conversion between the two types is easy, but
might have unexpected performance issues

55

symbio

Strings are implicitly shared, so in general,
should be treated as a value

e Returned from functions like value
e Stored into objects as values

e Function parameters should use constant
reference, not value

const QString &

QString HelloWorld::hello () cons=t
{ vold HelloWorld: ::setDescription(const Q5tring &desc)
QS5tring =str = "Hello World™: {

return str; description = desc;

56

symbio

In Qt, a string can be changed

e Thus, differs from java immutable strings

e Modifying a string in-place is more efficient
(especially with reserve() function)

However, some care must be taken to avoid changes in
unexpected places

vold HelloWorld: :changeString (Q5tring &str)
{

=tr += " changed”:;

P

R5tring HelloWorld: :createNewString (const Q5tring &str)
{

return str + " changed®:

57

symbio

QString supports various operators

r 15 7 r rr 75 _r r 7 r 7 7 7 4
o 47 '4=" 5" < I<=" I>=" T==" Tl=

4 4

e Also work with literals JString strl T TRellon
. if (=trl == "hello™ && =str2 '= "wolrd™) {
e Character access with [] _ aDebug ("True");

58

symbio

Qt has gPrintable function, which should be
used when printing strings with gDebug

Q5tring =str = "Hello World™:

gDebug ("%s", gPrintable(str)):; QBvteArray str = "Hello World";
ghebug ("%3", str.constDatal)):
const char #*str = "Hello Worl

59

symbio

List containers

e QList, QLinkedList, QVector, QStack, QQueue

Usually QList is best for ordinary tasks

e (QStringlList for strings

Associative containers

e (QSet, QMap, QHash, QMultiMap, QMultiHash

e (QMap for sorted, QHash for unsorted items

60

symbio

Containers are based on C++ templates

e Type safety -> helps prevent errors
e Type of object is specified within angle brackes

e Only objects of specific type can be used

Some examples:

e QList<QPicture>
List of pictures

e (QHash<QString,QObject>

Name-to-object dictionary

61

symbio

Lists are index-based, starting from O

e Fast access if index is known, slow to search

Adding and removing items

4

e append, insert, '+=', '<<

Accessing items

strings.append ("1") ;

strings << "2" £« "3I" Lo 4T
[] at, ’[]’ strings.insertc (2, "2"):

strings.removelCne ("2") ;

gDebug ("%3", gPrintable (string=[2])): /) 3

62

symbio

Can be used to iterate over lists

Takes a shallow copy of the container

e If original container is modified while in loop,
the one used in the loop remains unchanged

Q5tring hello = "Hello World !'11!7;
p5tringlist strlist = hello.splitc (™ "):
foreach (Q5tring str, strlList) {

ghebug ("Parc: %=", gPrintable (str)):

63

symbio

Associative containers are used to map
keys to values

e In QSet, key and value are the same
QSet<String>

e Other containers have separate keys and values
QHash<QString,QString>

e Normal versions have one-to-one mapping,
multi-versions accept multiple values for single
key

QMultiMap<QString, QObject *>

64

<symbio-

Object model and signals & slots

CORE FEATURES

symbio

Usual Qt program is based around a tree-
based hierarchy of objects

e Designed to help with C++ memory
management

e Based on QObject class

e Do not confuse with class inheritance

66

Object model

® A QObject may have a
parent object and number
of child objects

® Object without parent is
called a root object

® When an object is deleted,
it will also delete all it's
children

<symbio-

symbio

All GUI components inherit from QWidget,
which in turn inherits from QObject

e Thus, GUI widgets are also arranged into tree

hierarchy H
Hello
e The root widget is a window World

e Enabling / disabling or showing / hiding a widget
will also affect its children

68

symbio

Qt way of making callback functions simple

e Example cases

What happens when user presses a GUI button

What happens when data arrives from network

e Similar semantics as with Java listeners

A signal is emitted, which results in a
function call to all slots that have been
connected to the signal

e j.e.onSignal: slot() in QML code

69

symbio

Code to support signal-slot connections is
generated by the moc tool when project is
compiled

Special keywords are used, which are
interpreted by moc

e (Q_OBIJECT, signals, slots, emit

70

symbio

Q_OBJECT keyword must be added to
every class that inherits from QObject base
class

e Tells moc to parse the class contents

e QtCreator complains if missing

class Emitter : public QObject {
.-.-Tgin doSomething() { emit changed(): }

R ﬂfiﬁ changed () ;
}; you forgot the Q_OBJECT macro

71

symbio

signals keyword is used to start a block of
signal definitions

e Signal functions are not implemented. Instead,
the code for them is generated by moc

e Signals can have parameters as any normal
function

A slot that is connected to signal must have matching
parameter count and types

7 void helloSignal();
vold signalWithParams(const QString &data, gqint32 value):

.;:;-Héiiutl;

72

symbio

slots keyword starts a block of slot

defInItIOHS public 5'_:‘.5:.
void publicSlot():
e Each slot is a normal C++ function void protectedsloto;
) :j;::‘i-r;;;r:"nalslntl[]l;

Can be called directly from code

e Normal visibility rules apply when called directly
from code

However, signal-slot connections will ignore visibility
and thus it's possible to connect to private slot from
anywhere

73

symbio

emit keyword is used to send a notification
to all slots that have been connected to the
signal

e (Object framework code loops over the slots that
have been connected to the signal and makes a
regular function call to each

74

symbio

Connections are made with
QObject: :connect static functions

e No access control, anyone can connect anything

e C(lass headers are not needed if signal and slot
function signatures are known

Component-based approach

e Components provide services

e Controller makes the connections between
components

75

Connecting signals to slots <5ymb|0>

— class Emitter : public QObject {
0_OBJECT
public:
vold doSomething() { emit changed(): }
signals:
void changed():
I

— class Observer : public QObject {
Q_OBJECT
public slots:
- void notifyChange() {
}
}

— class Manager : public QObject {
Q_OBJECT
public:
Manager() : emitter(new Emitter(this]}),
= observer(new Observer(this)) {
}
= void connectObjects() {
Qobject::connect(emitter, SIGNAL (changed(]).
observer, SLOT(notifyChange()));
emitter-=doSomething():
}
private;
Emitter *emitter;
Observer *observer;

- L] » - - - . - . .' ' 76

Signals and slots <symbio-

® Comparing Qt and Java fmport

interface ChangeEventListener {
void notifyChange();

class Emitter : public QObject {

0_OBJECT
public: class Emitter {

void doSomething() { emit changed(); } private ArraylList<ChangeEventlListener> listeners =
signals: new ArrayList<ChangeEventListener>();

void changed(); void addChangeListener{ChangeEventListener listener) {
h listeners.add(listener);

}

class Observer : public QObject { void doSomething() { changed(); }

Q_0BJECT private void changed() {
public slots: for (int i = 0; i < listeners.size(); i++) {

void notifyChange() {

} listeners.get(i).notifyChange();

}: ¥

class Manager : public QObject { }

publgE?BJECT class Db§erver implgments ChangeEventListener {
Manager() : emitter(new Emitter(this)), public void notifyChange() {
observer(new Observer(this)) { } }
}
vold connectObjects() { .
Q0bject::connect(emitter, SIGNAL(changed()), P“bllC‘C1355 Manager {
observer, SLOT(notifyChange())); private Emitter emitter = new Emitter();
emitter->doSomething(); private Observer observer = new Observer();
} vpid connectObjects() {
private: emitter.addChangelistener(observer);
Emitter *emitter; emitter.doSomething();
Observer *observer; }
b }

Open the hellosignalsiot example

Build and run

symbio

78

symbio

The program event loop was created

// Main loop of console application
QCorefpplication alargc, argv);

Note that new operator was not used

e Object was allocated on stack

e Stack variables will be automatically deleted at
the end of the scope they belong to

In this case the scope is the main function

Thus, delete is not needed

79

symbio

Two objects were created

e (QCoreApplication object was assigned as the
parent object

e Thus, parent will delete them when it is deleted

// Creates a timer and hello object with the QCoreApplication as parent
OTimer *timer = new QTimer(&a);
HelloSignalSlot *hello = new HelloSignalSlot(&a);

Note: timer and hello could also be
allocated from stack

e But parent must not be used in that case (why?)

80

symbio

Objects were connected together

// Connects signals to slots
Q0bject::connect(timer, SIGNAL(timeout()). hello, SLOT(hello())):
Q0bject::connect(hello, SIGNAL(helloSignal()). &a, SLOT(quit())):

Note that timer and hello objects don't
know anything about each other

81

symbio

Timer and event loop were started

/4 Starts timer and runs main loop
timer->start(10000); _ _
int result = a.exec(): void HelloSignalSlot::hello()
{
gDebug(“Hello signal!!!");
enit helloSignal();

e When event loop is active }

The timer gets an event from the system and emits
timeout signal after 10 seconds

timeout signal is connected to the hello slot
Hello slot prints something and emits helloSignal
helloSignal is connected to event loop quit slot

Quit slot stops the event loop and thus exec function
returns and program quits

82

symbio

Open the hellosignalsiot example that
presented in previous slides

Change it so that it prints "Hello” and
"World” with 5-second interval and quits
after the second print

83

<symbio-

Object properties

CORE FEATURES

symbio

All QObject-based classes support
properties

e A property is QVariant type, which is stored in a
dictionary that uses C-style zero-terminated
character arrays as keys

i.e. name-value pair

e Properties can be dynamic or static

Dynamic properties are assigned at run-time

Static properties are defined at compile time and
processed by the meta-object compiler

85

symbio

Static properties are declared into class
header using Q_PROPERTY macro

clasz AnimatedPixmap @ public QObject, public QGraphicsPixmapltem

mOOR TR T
b UL

::PRCPER?Yineal rotation READ rotation WRITE =setRotation NOTIFY rotationChanged)

The above statement defines a property

e Type is greal, name is rotation
e When read, rotation function is called
e When modified, setRotation function is called

e Changes are notified via rotationChanged signal

86

symbio

Properties are used in QML/C++ hybrid
programming

e Object properties are mapped into QML
Monday’s topics

e QML plug-in’s

e Exposing C++ objects to QML

87

SERIOUS ABOUT SOFTWARE

cv o 00 ©® o © 88

