
1

SERIOUS ABOUT SOFTWARE

Qt Quick – Hybrid models and Mobility

Timo Strömmer, Jan 10, 2010

Contents

• QML-C++ hybrids

• Exporting objects and properties into QML

• Writing QML plug-ins

• Qt Mobility

• Development environment setup

• Integration with mobile peripherals

• QML-Web hybrids

• Web browser integration

2

C++/QML HYBRIDS

Simple C++ / QML integration example

3

Hybrid programs

• Hybrid programs get the benefit from both

worlds

• Ease of QML / script programming

• See for example hellographics vs. HelloGraphicsQML

• Power and flexibility of C++

• Access to all services provided by the platform

• C++ performance with larger data-sets

4

QML/C++ hybrid

• A C++ GUI application may contain

QDeclarativeView GUI components

• Available for example via the GUI designer

• Each runs it’s own declarative engine

• qmlviewer also runs one

• Resource-wise it’s not a good idea to run many

views in a single program

5

QML/C++ hybrid

• QDeclarativeView has setSource function,

which takes the URL of the QML file as

parameter

• Thus, can load also from web

• The QML files of the application can also be

bundled into a resource file

6

QML/C++ exercise

• Create a new Qt GUI Project

• Add a QDeclarativeView to the GUI form

• Add QT += declarative to .pro file

• Takes declarative QT module into use

• Add a QML file to the project

• Implement a GUI

• Add a new Qt resource file to project

• Add a / prefix

• Add the QML file under the prefix

7

QML/C++ exercise

• Load the QML file from resource in the

MainWindow constructor

• Build and run

8

QML/C++ interaction

• To access the QML core from C++ side, the

QDeclarativeView exposes a root context

• QDeclarativeContext class

• A property can be set with

setContextProperty function

• Access normally by name in QML

9

rectColor becomes
property of root

QML element

Exporting objects to QML

• Objects are registered with

qmlRegisterType template function

• Object class as template parameter

• Function parameters:

• Module name

• Object version number (major, minor)

• Name that is registered to QML runtime

10

Details about modules from:
http://doc.trolltech.com/4.7/qdeclarativemodules.html

http://doc.trolltech.com/4.7/qdeclarativemodules.html
http://doc.trolltech.com/4.7/qdeclarativemodules.html
http://doc.trolltech.com/4.7/qdeclarativemodules.html

• The exported classes can be used as any

other QML component

• The module needs to be imported

Using exported classes

11

QML object visibility

• Visibility at QML side

• QObject properties become element properties

• on<Property>Changed hook works if the NOTIFY signal

is specified at C++ side

- Also note that C++ signal name doesn’t matter

• QObject signals can be hooked with on<Signal>

• QObject slots can be called as JS functions

12

HYBRID PROGRAMMING

QML plug-in projects

13

QML plug-ins

• A plug-in allows QML runtime to load

Qt/C++ libraries

• Thus, QML/C++ hybrid code can be run via

qmlviewer or some other QML launcher

application

14

Quick start

• Create a QML extension plug-in project

• Wizard generates one QObject-based class

15

QML plug-in basics

• A QML plug-in library must have a class

which extends QDeclarativeExtensionPlugin

• Wizard generates

• The plugin has registerTypes function, which is

used to define components that are exported to

the QML runtime

• Use qmlRegisterType and pass the uri to the module

parameter

16

QML plug-in basics

• The API used by QML runtime to load the

plug-in is created via preprocessor macro

• Q_EXPORT_PLUGIN if plug-in project and class

names are the same (wizard does that)

• Q_EXPORT_PLUGIN2 if names are different

• See qmlpluginexample directory

17

QML plug-in basics

• The plug-in must define a qmldir file

• Describes the name of the plug-in to load

• libmobilityplugin.so on Linux

• mobilityplugin.dll on Windows

• Optionally may specify a sub-directory

18

Quick start continued

• Create a QML application project

• Copy the qmldir file from the C++ plug-in into

the applications plugin directory

• Edit the C++ plug-in .pro file

• Add DESTDIR statement to point to the QML

application directory

19

Quick start continued

• Switch to Release build

• Fails with Debug libraries

• Build

• The .so or .dll should be in the QML application

directory where qmldir file also sits

20

Example plug-in

• See PluginExample and qmlpluginexample

directories

• Stores TextInput content into a file while user is

typing

• Uses QSettings API from Qt core

• File in ~/.config/Symbio/QmlPluginExample.conf

21

HYBRID PROGRAMMING

More QML plug-in functions

22

Adding object properties

• Root QML context is also available to plug-

in components

• The QDeclarativeExtensionPlugin may

implement initializeEngine function

• QDeclarativeEngine which runs the QML code

comes as function parameter

23

Running pure QML

• Sometimes it’s better to test in pure QML

environment within qmlviewer

• Speeds up GUI development

• Two ways

• Use dummy objects to replace C++ types

• Use dummydata directory to replace properties

assigned from C++

24

Dummy types

• To create a dummy type, add a

corresponding QML component into the

plugin subdirectory

• Loaded if qmldir is missing

25

Dummy properties

• qmlviewer supports loading of properties

from dummydata subdirectory

• The file name must equal the property name

and thus starts with lower-case letter

• Properties must be wrapped into QObject

26

Plug-in example

• Example in qmlpluginhooks and

PluginHooks directories

• Registers a QML type

• Registers properties into root context

• Uses dummy data for both

27

MOBILE DEVELOPMENT

Setting up mobile development environment

28

Mobile development

• Mobile devices run different instruction set

• C++ code needs to be cross-compiled

• Qt SDK can build for N900 and Symbian

• Debugging on mobile difficult

• A simulator environment provided by Nokia

• Focus on N900 in these slides

29

Mobile targets

• Three pre-installed targets in SDK

• Maemo, Symbian, Simulator

30

Qt Simulator

• Simulator target can be used to test N900

or Symbian projects without real device

31

N900 environment

• Install Nokia Qt SDK

• Or integrate MADDE to existing QtCreator

• Install required libraries on the device

• Setup usb network between devices

• Setup SSH connectivity

• Build and run

32

Environment setup

• N900 guide at:

• http://doc.qt.nokia.com/qtcreator-

2.0.1/creator-developing-maemo.html

• Additionally QML viewer and Qt Mobility

• http://paazio.nanbudo.fi/tutorials/qt-quick/qt-

quick-qml-viewer-installation-in-nokia-n900

33

http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://doc.qt.nokia.com/qtcreator-2.0.1/creator-developing-maemo.html
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900
http://paazio.nanbudo.fi/tutorials/qt-quick/qt-quick-qml-viewer-installation-in-nokia-n900

N900 packaging

• QtCreator project options have an

additional packaging step for Maemo

projects

34

N900 packaging

• QtCreator can only package applications

• By default the project goes to /usr/local/bin

• QML must be packaged into project resources

• Pure QML projects must be deployed by

different means

• For example memory card copy

• See also http://qml.haltu.fi/

35

http://qml.haltu.fi/
http://qml.haltu.fi/

N900 packaging

• For plug-in projects, just disable packaging

• You’ll still get the library .so

• Copy to device into project directory

• Note that you cannot run from memory card

36

Cannot be removed

N900 packaging notes

• Mainly for own internal testing

• No applications menu integration etc.

• N900 based on Hildon UI framework

• Better wait for MeeGo and next Qt SDK

• Also note that MeeGo uses different

packaging mechanism

• Debian in Maemo, RPM in MeeGo

37

QT MOBILITY

Overview of the mobility API’s

38

Qt Mobility API’s

• List of API’s in Qt Mobility 1.1

• http://qt.nokia.com/products/qt-

addons/mobility

• Pre-built libraries in SDK

• But not the latest 1.1 version

• Missing some libraries and QML integration

• Can be tested in Simulator

• To get latest, you’ll need to build from sources

39

http://qt.nokia.com/products/qt-addons/mobility
http://qt.nokia.com/products/qt-addons/mobility
http://qt.nokia.com/products/qt-addons/mobility

Qt Mobility API’s

• Mobility API’s are enabled via

project file

• CONFIG += mobility

• MOBILITY = <modules to use>

• Example in n900test directory

• For some reason the qmllocation

project refuses to work

40

Qt Mobility API’s

41

Qt Mobility API’s

• SDK comes with older libraries

• So, check what’s in there

• <creator-path>/Simulator/QtMobility/gcc/include

42

HYBRID PROGRAMMING

QML / Web hybrids

43

Web browser integration

• QML has WebView component

• Was used in n900test example to load map

• Found from QtWebKit 1.0 module

• Basic properties

• url specifies the web page to display

• preferredWidth and preferredHeight to control

the displayed web page size

• Wrap into Flickable to enable scrolling

• Still no scrollbars…

44

Web browser integration

• WebView provides action objects for web

page navigation

• back, forward, reload and stop

• Actions can be triggered from script

• Basic hook signals

• onLoadStarted, onLoadFinished, onLoadFailed

• onAlert

45

Web browser integration

• QML and web scripts may interact with

each other

• evaluateJavaScript function runs script code in

the context of the web browser

• javascriptWindowObjects property registers QML

objects as properties of the web window

• WebView.windowObjectName attached property

defines the name visible to browser

• Functions of the object can be called via browser script

• Example in WebHybrid directory

46

QUESTIONS?

47

48

