
1

SERIOUS ABOUT SOFTWARE

Qt – Core features

Timo Strömmer, May 26, 2010

Contents

• C++ refresher

• Core features

• Object model

• Signals & slots

• Event loop

• Shared data

• Strings

• Containers

• Private implementation pattern

Quick C++ refresher
Object-oriented programming with C++

3

Quick C++ OOP refresher

• A class defines the structure of an object

• Objects are created with new operator and freed

with delete operator

• When object is created, its constructor is called

and delete calls destructor

4

Quick C++ OOP refresher

• Object data must be initialized in

constructor and freed in destructor

• C++ has constructor initializer list

5

Quick C++ OOP refresher

• A class may inherit other classes

• Derived class gets all the properties of the base

class

• When object is created, base class constructor is

called first

• If base class constructor needs parameters, it needs to

be explicitly called from derived class initializer list

• Delete happens in reverse order, derived class

destructor is called first

6

Memory management

• Calling new reserves an area of memory

for the object

• The area will stay reserved until delete is called

or the program terminates

• If objects are not deleted, the program has

memory leaks

• Severity of the leaks depend on allocation size,

number of allocations and life-time of program

• Debugging can be costly

7

Memory management

• Objects allocated with new are reserved

from program heap

• Other option is to allocate objects from

program stack

• Stack variables are automatically deleted when

leaving the current program scope

• In general, anything based on QObject is

allocated with new

• Some exceptions of course…

8

Memory management

• Stack vs. heap

9

Core features
Object model, signals & slots and event loop

10

Object model

• Usual Qt program is based around a tree-

based hierarchy of objects

• Designed to help with C++ memory

management

• Based on QObject class

• Do not confuse with class inheritance

11

Object model

• A QObject may have a

parent object and number

of child objects

• Object without parent is

called a root object

• When an object is deleted,

it will also delete all it’s

children

12

QObject

QObject

QObject

QObject

QObject

Object model and GUI

• All GUI components inherit from QWidget,

which in turn inherits from QObject

• Thus, GUI widgets are also arranged into tree

hierarchy

• The root widget is a window

• Enabling / disabling or showing / hiding a widget

will also affect its children

13

Signals and slots

• Qt way of making callback functions simple

• Example cases

• What happens when user presses a GUI button

• What happens when data arrives from network

• Similar semantics as with Java listeners

• A signal is emitted, which results in a

function call to all slots that have been

connected to the signal

14

Signals and slots

• Code to support signal-slot connections is

generated by the moc tool when project is

compiled

• Special keywords are used, which are

interpreted by moc

• Q_OBJECT, signals, slots, emit

15

Special keywords

• Q_OBJECT keyword must be added to

every class that inherits from QObject base

class

• Tells moc to parse the class contents

• QtCreator complains if missing

16

Special keywords

• signals keyword is used to start a block of

signal definitions

• Signal functions are not implemented. Instead,

the code for them is generated by moc

• Signals can have parameters as any normal

function

• A slot that is connected to signal must have matching

parameter count and types

17

Special keywords

• slots keyword starts a block of slot

definitions

• Each slot is a normal C++ function

• Can be called directly from code

• Normal visibility rules apply when called directly

from code

• However, signal-slot connections will ignore visibility

and thus it’s possible to connect to private slot from

anywhere

18

Special keywords

• emit keyword is used to send a notification

to all slots that have been connected to the

signal

• Object framework code loops over the slots that

have been connected to the signal and makes a

regular function call to each

19

Connecting signals to slots

• Connections are made with

QObject::connect static functions

• No access control, anyone can connect anything

• Class headers are not needed if signal and slot

function signatures are known

• Component-based approach

• Components provide services

• Controller makes the connections between

components

20

Connecting signals to slots

21

Signals and slots

• Comparing Qt and Java

22

Event loop

• Purpose of event loop is to keep program

running and responsive to whatever

happens

• User interaction

• Interaction with environment

• Basic idea

23

Event processing

• Any Qt object may be a target for events

• void QCoreApplication::postEvent (QObject *

receiver, QEvent * event)

• Adds an event to a queue

• bool QObject::event (QEvent * e)

• Processes an event

• Usually an event is propagated out as signal

emission

• For example, mouse click on button generates an

activated signal

24

Trying it out

• Create a new console application with

QtCreator

• Add a new QObject-based class into it

• See next slide

25

Trying it out

26

Trying it out

27

Trying it out

28

• Copy the main function from hellosignalslot

example into your main function

• Build & run

What was done?

• The program event loop was created

• Note that new operator was not used

• Object was allocated on stack

• Stack variables will be automatically deleted at

the end of the scope they belong to

• In this case the scope is the main function

• Thus, delete is not needed

29

What was done?

• Two objects were created

• QCoreApplication object was assigned as the

parent object

• Thus, parent will delete them when it is deleted

• Note: timer and hello could also be

allocated from stack

• But parent must not be used in that case (why?)

30

What was done?

• Objects were connected together

• Note that timer and hello object don’t know

anything about each other

31

What was done?

• Timer and event loop were started

• When event loop is active

• The timer gets an event from the system and emits

timeout signal after 10 seconds

• timeout signal is connected to the hello slot

• Hello slot prints something and emits helloSignal

• helloSignal is connected to event loop quit slot

• Quit slot stops the event loop and thus exec function

returns and program quits

32

Short exercise

• Open the hellosignalslot example that

presented in previous slides

• Change it so that it prints ”Hello” and

”World” with 5-second interval and quits

after the second print

33

More core features
Shared data objects

34

Shared data objects

• For some objects there’s no use for

features of the object model

• Performance reasons

• Strings, images, collections

• Object data is usually implicitly shared

• Copy-on-write semantics

• Easier to use that just pointers

35

Implicit sharing

• In normal C++ an object is allocated and a

pointer to it is passed around

• Care must be taken that object is not deleted

while it’s still being pointed to

36

H e l l o ! \0

char *ptr

char *ptr

char *ptr

Implicit sharing

• In implicit sharing, a reference counter is

associated with the data

• Data pointer is wrapped into a container object,

which takes care of deleting the data when

reference count reaches 0

37

QString str

Data *
H e l l o ! \0int ref = 2

Data

QString str

Data *

Implicit sharing

• Implicitly shared objects can be treated as

simple values

• Only the pointer is passed around

38

QString str

Data * C h a n g e \0int ref = 1

Data

QString str

Data *

H e l l o ! \0int ref = 1

Data

Terminology

• Copy-on-write

• Make a shallow copy until something is changed

• Shallow copy

• Copy just the pointer, not actual data

• Deep copy

• Create a copy of the data

39

Copy on write

40

Strings

• Two types of string

• UNICODE strings (QString)

• Byte arrays (QByteArray)

• In general, QString should be used

• UNICODE, so can be localized to anything

• Conversion between types is easy, but might

have unexpected performance issues

41

Strings and implicit sharing

• Strings are implicitly shared, so in general,

should be treated as a value

• Returned from functions like value

• Stored into objects as values

• Function parameters should use constant

reference, not value

• const QString &

42

String operations

• In Qt, a string can be changed

• Thus, differs from java immutable strings

• Modifying a string in-place is more efficient

(especially with reserve() function)

• However, some care must be taken to avoid changes in

unexpected places

43

String operations

• QString supports various operators

• ’+’, ’+=’, ’>’, ’<’, ’<=’, ’>=’, ’==’, ’!=’

• Also work with literals

• Character access with []

44

Console output

• Qt has qPrintable function, which should be

used when printing strings with qDebug

45

Generic containers

• List containers

• QList, QLinkedList, QVector, QStack, QQueue

• Usually QList is best for ordinary tasks

• QStringList for strings

• Associative containers

• QSet, QMap, QHash, QMultiMap, QMultiHash

• QMap for sorted, QHash for unsorted items

46

C++ templates

• Containers are based on C++ templates

• Type safety -> helps prevent errors

• Type of object is specified within angle brackes

• Only objects of specific type can be used

• Some examples:

• QList<QPicture>

• List of pictures

• QHash<QString,QObject>

• Name-to-object dictionary

47

List containers

• Lists are index-based, starting from 0

• Fast access if index is known, slow to search

• Adding and removing items

• append, insert, ’+=’, ’<<’

• Accessing items

• at, ’[]’

48

Foreach statement

• Can be used to iterate over lists

• Takes a shallow copy of the container

• If original container is modified while in loop,

the one used in the loop remains unchanged

49

Associative containers

• Associative containers are used to map

keys to values

• In QSet, key and value are the same

• QSet<String>

• Other containers have separate keys and values

• QHash<QString,QString>

• Normal versions have one-to-one mapping,

multi-versions accept multiple values for single

key

• QMultiMap<QString, QObject *>

50

Creating new objects

• Two classes for reference counting

• QSharedData is inherited by data container

• QSharedDataPointer is used from public API

51

Copy constructor

• Private part of shared data object requires

a copy constructor, so deep copy is

possible in case data is changed

• Compiler can usually create one for you

52

Shared data reminders

• Keep things simple

• Do not use new to allocate shared data objects

• Instead, think of them as values (like int)

53

Programming exercise

• Create a new console project shareddata

• Add a shared data class Shared and

corresponding private SharedPrivate

• Add QString name member to SharedPrivate

• Add name and setName functions to Shared

• Add some qDebug statements to constructors

and destructors of Shared and SharedPrivate to

see what gets allocated and deleted

54

Programming exercise

• In main.cpp

• Add function, which creates 5 Shared objects,

adds them to a list and returns the list

• Call it from main()

• Loop over the contents of the list with foreach

• Print object name from the loop

• Replace return a.exec() with return 0;

55

Exercise notes

• Should allocate 5 SharedPrivate objects

• Number of allocated Shared objects is

something different

56

Opaque pointers
Planning for the future

57

Opaque pointers

• Private Implementation

• Separates implementation from public API

• Two classes that are linked together

• Also called ”d” and ”q” pointers in Qt (or pimpl)

• Why?

• Code maintenance

• Hide dirty details from user of the API

• Problem with C++ memory allocation

• Different backend for different environments

58

Memory allocation

• The size of the allocated memory block is

determined at compile time

• If used from other library, size change results in

binary break

59

Updated API

Changing implementation

• Sometimes it’s necessary to implement

features in platform-specific ways

• Pre-processor macros within a source

• Implementations for different platforms in

different sources

• Choice can be made in .pro file

• Whatever the case, the library public API

should be the same in all platforms

60

Opaque pointers

• Only a pointer member in public API, so

object size will not change when features

are added

61

Object ownership

• Public object owns the private object

• Allocated in constructor

• Deleted in destructor

62

Implementation options

• Totally separated

• Public API delegates all function calls to the

private counterpart

• Private implementation emits public API signals

• 2 sources, 2 headers – tedious to implement

63

Implementation options

• Private class within public

API source

• Just data in private class

• No need for two-way linking

between private and public

• Won’t work if needed from

other private sources

• But you can switch to fully

separated later if needed

64

Programming exercise
Music library object model

65

Programming exercise

• Music library

• Project was created on day 1

• Contents of a music library:

• MusicLibrary, Artist, Record, Song

• Relations:

• MusicLibrary has a list of artists

• Artist has a list of records

• Record has a list of songs

66

Programming exercise

• Object properties (set / get functions)

• Artist:

• Home page (QUrl)

• Record:

• Release date (QDateTime)

• Cover image (QString, represents file name)

• Song:

• Number (int)

• Song itself (QString, represents file name)

67

Programming exercise

• Common properties

• All objects have a name (QString)

• All objects must inherit QObject

• Objects must emit a signal when a property

changes

• Optional

• Add base class for common functionality

68

Programming exercise

• Optional

• Separate public API and private implementation

• Add functions to get:

• All artists, records and songs of music library

• All records of artist

• All songs of record

69

70

