symbio

SERTOUS ABOUT SOFTWARE

Qt — Core features

Timo Strommer, May 26, 2010

C++ refresher

Core features

e (Object model
e Signals & slots

e Event loop

Shared data
e 5trings

e (Containers

Private implementation pattern

symbio

<symbio

Quick C++ refresher

symbio

A class defines the structure of an object

e Objects are created with new operator and freed
with delete operator

e When object is created, its constructor is called
and delete calls destructor

clas=s HelloWidget : pubklic QWidget

{ . HelloWidget: :HelloWidget (QWidget #*parent) :
m_TEEEE GWidget (parent),

e L ui (new Ui::HelloWidget)

| et {

HelloWidget (QWidget *parent = 0);

ui-rzetupli (this);
~HelloWidget () ; ui->setupli |)
protected: HelloWidget: :~HelloWidget
volid changeEvent (QEvent *e); {E onrags elloWidget ()
delete ui;

TUi::HelloWidget #*ui;

Quick C++ OOP refresher Symb|0

® Object data must be initialized in
constructor and freed in destructor

e C++ has constructor initializer list

HelloWidget: :HelloWidget (QWidget *parent) :
QWidget (parent) .
ui (new Ui::HelloWidget)

ui-»zgetupli (this);

privace.

o _ o
. Ui::HelloWidget *ul; HelloWidget: :~HelloWidget ()

symbio

A class may inherit other classes

e Derived class gets all the properties of the base
class

e When object is created, base class constructor is
called first

If base class constructor needs parameters, it needs to
be explicitly called from derived class initializer list

e Delete happens in reverse order,|derived class
destructor is called first

HelloWidgEt: iHelloWidget (QWidget *parent)
OWidget (parent),
ui(new Ui::HelloWidget)

symbio

Calling new reserves an area of memory
for the object

e The area will stay reserved until delete is called
or the program terminates

If objects are not deleted, the program has
memory leaks

e Severity of the leaks depend on allocation size,
number of allocations and life-time of program

e Debugging can be costly

symbio

Objects allocated with new are reserved
from program heap

Other option is to allocate objects from
program stack

e Stack variables are automatically deleted when
leaving the current program scope

In general, anything based on QObject is
allocated with new

e Some exceptions of course...

Memory management

® Stack vs. heap

i{
QObject *obj = new QObject():
Qobject obj2():
int value = 0;

¥

<symbio-

<symbio-

Core features

Object model, signals & slots and event loop

10

symbio

Usual Qt program is based around a tree-
based hierarchy of objects

e Designed to help with C++ memory
management

e Based on QObject class

e Do not confuse with class inheritance

11

Object model

® A QObject may have a
parent object and number
of child objects

® Object without parent is
called a root object

® When an object is deleted,
it will also delete all it's
children

<symbio-

symbio

All GUI components inherit from QWidget,
which in turn inherits from QObject

e Thus, GUI widgets are also arranged into tree

hierarchy H
Hello
e The root widget is a window World

e Enabling / disabling or showing / hiding a widget
will also affect its children

13

symbio

Qt way of making callback functions simple

e Example cases

What happens when user presses a GUI button

What happens when data arrives from network

e Similar semantics as with Java listeners

A signal is emitted, which results in a
function call to all slots that have been
connected to the signal

14

symbio

Code to support signal-slot connections is
generated by the moc tool when project is
compiled

Special keywords are used, which are
interpreted by moc

e (Q_OBIECT, signals, slots, emit

15

symbio

Q_OBJECT keyword must be added to
every class that inherits from QObject base
class

e Tells moc to parse the class contents

e QtCreator complains if missing

class Emitter : public QObject {
.-.-Tgin doSomething() { emit changed(): }

R ﬂfiﬁ changed () ;
}; you forgot the Q_OBJECT macro

16

symbio

signals keyword is used to start a block of
signal definitions

e Signal functions are not implemented. Instead,
the code for them is generated by moc

e Signals can have parameters as any normal
function

A slot that is connected to signal must have matching
parameter count and types

7 void helloSignal();
vold signalWithParams(const QString &data, gqint32 value):

.;:;-Héiiutl;

17

symbio

slots keyword starts a block of slot

deflnltlons public 5'_:‘.5:.
void publicSlot():
e Each slot is a normal C++ function oid protectedsloto;
) :j;::‘i-r;;;r:"nalslntl[]l;

Can be called directly from code

e Normal visibility rules apply when called directly
from code

However, signal-slot connections will ignore visibility
and thus it’s possible to connect to private slot from
anywhere

18

symbio

emit keyword is used to send a notification
to all slots that have been connected to the
signal

e Object framework code loops over the slots that
have been connected to the signal and makes a
regular function call to each

19

symbio

Connections are made with
QObject: :connect static functions

e No access control, anyone can connect anything

e (lass headers are not needed if signal and slot
function signatures are known

Component-based approach

e Components provide services

e Controller makes the connections between
components

20

Connecting signals to slots <5ymb|0>

— class Emitter : public QObject {
0_OBJECT
public:
vold doSomething() { emit changed(): }
signals:
void changed():
I

— class Observer : public QObject {
Q_OBJECT
public slots:
- void notifyChange() {
}
}

— class Manager : public QObject {
Q_OBJECT
public:
Manager() : emitter(new Emitter(this]}),
= observer(new Observer(this)) {
}
= void connectObjects() {
Qobject::connect(emitter, SIGNAL (changed(]).
observer, SLOT(notifyChange()));
emitter-=doSomething():
}
private;
Emitter *emitter;
Observer *observer;

"te s e 0 0 0 © ‘e o 21

Signals and slots <symbio-

® Comparing Qt and Java fmport

interface ChangeEventListener {
void notifyChange();

class Emitter : public QObject {

0_OBJECT
public: class Emitter {

void doSomething() { emit changed(); } private ArraylList<ChangeEventlListener> listeners =
signals: new ArrayList<ChangeEventListener>();

void changed(); void addChangeListener{ChangeEventListener listener) {
h listeners.add(listener);

}

class Observer : public QObject { void doSomething() { changed(); }

Q_0BJECT private void changed() {
public slots: for (int i = 0; i < listeners.size(); i++) {

void notifyChange() {

} listeners.get(i).notifyChange();

}: ¥

class Manager : public QObject { }

publgE?BJECT class Db§erver implgments ChangeEventListener {
Manager() : emitter(new Emitter(this)), public void notifyChange() {
observer(new Observer(this)) { } }
}
vold connectObjects() { .
Q0bject::connect(emitter, SIGNAL(changed()), P“bllC‘C1355 Manager {
observer, SLOT(notifyChange())); private Emitter emitter = new Emitter();
emitter->doSomething(); private Observer observer = new Observer();
} vpid connectObjects() {
private: emitter.addChangelistener(observer);
Emitter *emitter; emitter.doSomething();
Observer *observer; }
b }

symbio

Purpose of event loop is to keep program
running and responsive to whatever
happens

e User interaction

e Interaction with environment

Basic idea

while (isRunning()) {
if (hasEvent()) {
processEvent () ;
} else {
waithMoment () :

23

symbio

Any Qt object may be a target for events
e void QCoreApplication::postEvent (QObject *
receiver, QEvent * event)
Adds an event to a queue
e bool QObject::event (QEvent * e)

Processes an event

e Usually an event is propagated out as signal
emission

For example, mouse click on button generates an
activated signal

24

Create a new console application with
QtCreator

Add a new QObject-based class into it

e See next slide

symbio

25

Trying it out <symbio-

D @® C++ Class Wizard

Enter class name
The header and source file names will be derived from the class name

Class name: [HeIIDSignaISIDt |
Base class: | QObject H
pe information: SRR

Header file: [hellosignalslt}t.h |
Source file: [hellosignalslt}t.cpp |

Path: [(lillifqtpmjectsfhelIosignalslt}t| M

Code less.

Create more.

Deploy everywhere. m

* + s s 00 @ P 26

Trying it out <5ymb|0>

+« ¢ hellosignalsiot.h + | 7 HelloSignalSlot

#1fndef HELLOSIGNALSLOT H
#define HELLOSIGNALSLOT H

+« % hellosignalsiot.cpp = | # HelloSignalSlot:
#include =<Q0bject= #include "hellosignalslot.h"
— class HelloSignalSlot : public QObject HelloSignalSlot::HelloSignalSlet (QObject *parent) :
{ - Q0bject(parent)
Q_OBJECT {
public: 1
explicit HelloSignalSlot(QObject *parent = 0);
— wvoid HelloSignalSlot::hello()
signals: {
| void helloSignal(): qDebug ("Hello signal!!!");
enit helloSignal();
public slots: 1
| void hello(); o
I

#endif s/ HELLOSIGNALSLOT H

-

" s s e e o 0 ® o ® 27

Trying it out

symbio

® Copy the main function from hellosignalsiot
example into your main function

int main(int argc, char *argv(])

® Build & run {

qDebug ("Start!!!");

/¢ Main loop of console application
QCorelApplication alargc, argv);

// Creates a timer and hello object with the QCoreApplication as parent
QTimer *timer = new QTimer(&a);
HelloSignalSlot *hello = new HelloSignalSlot(&a):

// Connects signals to slots
Q0bject::connect(timer, SIGNAL(timeout()). hello, SLOT(hello())):
QoObject::connect(hello, SIGNAL(helloSignal()). &, SLOT(quit()));

// Starts timer and runs main loop
timer-=start (10000);
int result = a.exec():

qDebug ("Quit!!!");
return result;

28

symbio

The program event loop was created

// Main loop of console application
QCorefpplication alargc, argv);

Note that new operator was not used

e Object was allocated on stack

e Stack variables will be automatically deleted at
the end of the scope they belong to

In this case the scope is the main function

Thus, delete is not needed

29

symbio

Two objects were created

e (QCoreApplication object was assigned as the
parent object

e Thus, parent will delete them when it is deleted

// Creates a timer and hello object with the QCoreApplication as parent
OTimer *timer = new QTimer(&a);
HelloSignalSlot *hello = new HelloSignalSlot(&a);

Note: timer and hello could also be
allocated from stack

e PBut parent must not be used in that case (why?)

30

symbio

Objects were connected together

// Connects signals to slots
Q0bject::connect(timer, SIGNAL(timeout()). hello, SLOT(hello())):
Q0bject::connect(hello, SIGNAL(helloSignal()). &a, SLOT(quit())):

Note that timer and hello object don't know
anything about each other

31

symbio

Timer and event loop were started

/4 Starts timer and runs main loop
timer->start(10000); _ _
int result = a.exec(): void HelloSignalSlot::hello()
{
gDebug(“Hello signal!!!");
enit helloSignal();

e When event loop is active !

The timer gets an event from the system and emits
timeout signal after 10 seconds

timeout signal is connected to the hello slot
Hello slot prints something and emits helloSignal
helloSignal is connected to event loop quit slot

Quit slot stops the event loop and thus exec function
returns and program quits

32

symbio

Open the hellosignalslot example that
presented in previous slides

Change it so that it prints “"Hello” and
"World” with 5-second interval and quits
after the second print

33

More core features

<symbio

34

symbio

For some objects there’s no use for
features of the object model

e Performance reasons

e Strings, images, collections

Object data is usually implicitly shared

e Copy-on-write semantics

e FEasier to use that just pointers

35

symbio

In normal C++ an object is allocated and a

pointer to it is passed around

Care must be taken that object is not deleted

while it’s still being pointed to

char *ptr

char *ptr

H

-

char *ptr

36

symbio

In implicit sharing, a reference counter is
associated with the data

e Data pointer is wrapped into a container object,
which takes care of deleting the data when
reference count reaches 0

QString str
Data *
QString str Data
- intref =2 |H |e |I I o |! \O0

Data *

37

Implicit sharing

symbio

* Implicitly shared objects can be treated as

simple values

e Only the pointer is passed around

QString str

Data *

QString str

Data *

Data

intref=1 ' \O
Data

intref=1 e |\0

38

symbio

Copy-on-write
e Make a shallow copy until something is changed

Shallow copy

e Copy just the pointer, not actual data

Deep copy

e (Create a copy of the data

39

Copy on write <5ymb|0>

$#include «<QtCore/QCorelpplication>

4 clasz CopyOnWriteIllustration

{
public:
wvold setInteger (gint32 i) { wvalue = i; }
gint3Z integer() const { return wvalue; }
wvold setString(const Q5tring &=) { str = =; }
Q5tring string(}) const { return str; }
private:
gint32? wvalue;
Q5tring =str;
¥

4 int main(int argec, char *argv[])

{
QCorelpplication alargc, argv):
CopyCnWriteIllustration cowi:;
cowl.setInteger (100) ;
coWwl.setString ("Test™) ;
gint3Z changedInt = cowi.integer():
Q5tring changedStr = cowi.string()
changedInt += 5;
changedStr.append (" Changed™) ;
ghebug ("Cbject: %d, Changed: %d", cowi.integer(), changedInt):
glebug ("Ckbject: %=, Changed: %=", cowi.string().toLatinl () .datal(),
changedStr.tolatinl () .datal()); ..
- L]
return a.exec(); L] .
; a @
. L] a L L] ™ . ' L]
¥ e . '. . L
L - - - & . - L] . .. 40

symbio

Two types of string

e UNICODE strings (QString)

e Byte arrays (QByteArray)

In general, QString should be used

e UNICODE, so can be localized to anything

e (Conversion between types is easy, but might
have unexpected performance issues

41

symbio

Strings are implicitly shared, so in general,
should be treated as a value

e Returned from functions like value
e Stored into objects as values

e Function parameters should use constant
reference, not value

const QString &

QString HelloWorld::hello () cons=t
{ vold HelloWorld: ::setDescription(const Q5tring &desc)
QS5tring =str = "Hello World™: {

return str; description = desc;

42

symbio

In Qt, a string can be changed

e Thus, differs from java immutable strings

e Modifying a string in-place is more efficient
(especially with reserve() function)

However, some care must be taken to avoid changes in
unexpected places

vold HelloWorld: :changeString (Q5tring &str)
{

=tr += " changed”:;

P

R5tring HelloWorld: :createNewString (const Q5tring &str)
{

return str + " changed®:

43

symbio

QString supports various operators

r 15 7 r rr 75 _r o r 7 r 7 r 7 I
o 47 '4="">" < I<=" I>=" T==" =

I/ 14

e Also work with literals JString strl T TRellon
. if (=trl == "hello™ && =str2 '= "wolrd™) {
e (Character access with [] _ aDebug ("True");

44

symbio

Qt has gPrintable function, which should be
used when printing strings with gDebug

Q5tring =str = "Hello World™:

gDebug ("%s", gPrintable(str)):; QBvteArray str = "Hello World";
ghebug ("%3", str.constDatal)):
const char #*str = "Hello Worl

45

symbio

List containers

e (QList, QLinkedList, QVector, QStack, QQueue
e Usually QList is best for ordinary tasks

e QStringList for strings

Associative containers

e (QSet, QMap, QHash, QMultiMap, QMultiHash

e (QMap for sorted, QHash for unsorted items

46

symbio

Containers are based on C++ templates

e Type safety -> helps prevent errors
e Type of object is specified within angle brackes

e Only objects of specific type can be used

Some examples:

e QList<QPicture>
List of pictures
e (QHash<QString,QObject>

Name-to-object dictionary

47

symbio

Lists are index-based, starting from O

e Fast access if index is known, slow to search

Adding and removing items

4

e append, insert, '+=', '<<

Accessing items

strings.append ("1") ;

strings << "2" £« "3I" Lo 4T
[] at, ’[]’ strings.insertc (2, "2"):

strings.removelCne ("2") ;

gDebug ("%3", gPrintable (string=[2])): /) 3

48

symbio

Can be used to iterate over lists

Takes a shallow copy of the container

e If original container is modified while in loop,
the one used in the loop remains unchanged

Q5tring hello = "Hello World !'11!7;
p5tringlist strlist = hello.splitc (™ "):
foreach (Q5tring str, strlList) {

ghebug ("Parc: %=", gPrintable (str)):

49

symbio

Associative containers are used to map
keys to values

e In QSet, key and value are the same
QSet<String>

e Other containers have separate keys and values
QHash<QString,QString>

e Normal versions have one-to-one mapping,
multi-versions accept multiple values for single
key

QMultiMap<QString, QObject *>

50

Creating new objects symblo

® Two classes for reference counting

e (SharedData is inherited by data container

e (QSharedDataPointer is used from public API

class Shared

{
public:
Egﬁ;i:éi?ﬁzt Gstring &name); class SharedPrivate : public QSharedData
' {
Qstring name() const { return d-=name; } PUhI;;;redPrivate{j-
vold setName(const QString &name) { d-=name = name; } charedPrivate (const SharedPrivate Sother):
private: ~SharedPrivate():
QsharedDataPointer<SharedPrivate> d: :
}: Qstring name;
' ¥

51

symbio

Private part of shared data object requires
a copy constructor, so deep copy is
possible in case data is changed

e Compiler can usually create one for you

SharedPrivate::SharedPrivate()
i
gDebug ("Private - Alloc");

SharedPrivate: :~SharedPrivate()
{
gDebug ("Private - Delete");

SharedPrivate::SharedPrivate (const SharedPrivate Sother)
: QSharedDatal{other), name(other.name)

{
gDebug("Private - Copy"):

1

52

symbio

Keep things simple
e Do not use new to allocate shared data objects

e Instead, think of them as values (like int)

53

symbio

Create a new console project shareddata

e Add a shared data class Shared and
corresponding private SharedPrivate

Add QString name member to SharedPrivate
Add name and setName functions to Shared
e Add some gDebug statements to constructors

and destructors of Shared and SharedPrivate to
see what gets allocated and deleted

54

symbio

In main.cpp

e Add function, which creates 5 Shared objects,
adds them to a list and returns the list

e (Call it from main()

e |Loop over the contents of the list with foreach

Print object name from the loop

e Replace return a.exec() with return 0;

55

symbio

Should allocate 5 SharedPrivate objects

Number of allocated Shared objects is
something different

56

<symbio

Opaque pointers

symbio

Private Implementation

e Separates implementation from public API

Two classes that are linked together

e Also called "d” and "q” pointers in Qt (or pimpl)

Why?

e (Code maintenance

Hide dirty details from user of the API

e Problem with C++ memory allocation
e Different backend for different envirenments

58

Memory allocation

® The size of the allocated memory block is
determined at compile time

e If used from other library, size change results in
binary break

clazss SimplevValue
i

class SimpleValue public:
i wvoid setValue (gint32 w):
public: quint32 wvalue () const:
vold setValue (gint32 v); wvoid setValue64 (gintéd v);
quinted wvaluee4d () const;

quint3Z value () const;

private:

private:
gintéd valuel;

gint32 valuel;
b

include "simplevalue.h™

<symbio-

59

symbio

Sometimes it's necessary to implement
features in platform-specific ways

® Pre-processor macros within a source

e Implementations for different platforms in
different sources

Choice can be made in .pro file

Whatever the case, the library public API
should be the same in all platforms

60

Opaque pointers symblo

class PIMPLSHARED EXPORT Pimpl : pubklic QObject

{
Q OBJECT class PimplPrivate
{
public: PimplPrivate():
Pimpl (QChject *parent = 0);
~Pimpl () : volid setString(const QString &s);
Q5tring string () const;
vold setdtring(const Q5tring &string):
Q5tring string() const; Private:
friend claszs Pimpl;
signals: Pimpl *publicPtr;
void stringChanged() ; Q5tring str;
private:

PimplPrivate *privatePtr;

® Only a pointer member in public API, so
object size will not change when features
are added

61

Public object owns the private object

e Allocated in constructor

e Deleted in destructor

Pimpl: :Pimpl (QCbject *parent) : QCbJject (parent)
i
privatePtr = new PimplPrivate():
privatePtr->publicPtr = this;

Pimpl: i ~Pimpl ()
i
delete privatePtr;

symbio

62

symbio

Totally separated

e Public API delegates all function calls to the
private counterpart

¢ Private implementation emits public API signals

e 2 sources, 2 headers - tedious to implement

P T

vold PimplPrivate::setString(const Q5String &s)

volid Pimpl::=setString({const QS5tring &string) {
{ str = =:

privatePtr-»setString (string) ; emit publicPtr-»stringChanged()}:
QEtring Pimpl::string(} const R5tring PimplPrivate::string(} const
{ {

return privatePtr-»string(): return str;

63

Private class within public
API source

e Just data in private class

No need for two-way linking
between private and public

e Won't work if needed from
other private sources

But you can switch to fully
separated later if needed

symbio

~la== PimplPrivate
{

Q5tring =str;

Pimpl: :Pimpl (QCbject *parent) : QCbkject (parent)
{

privatePtr = new PimplPriwvate();

Pimpl: :~Pimpl ()

{
delete privatePtr:;
volid Pimpl: :setS5tring{const Q5tring &string)
{
privatePcr-»=2tr = string:
emit stringChanged()
Q5tring Pimpl::=string()} const
{

return privatePtr->str;

64

<symbio

Programming exercise

65

Music library

e Project was created on day 1

e (Contents of a music library:
MusicLibrary, Artist, Record, Song
e Relations:

MusicLibrary has a list of artists
Artist has a list of records

Record has a list of songs

symbio

66

Object properties (set / get functions)

e Artist:
Home page (QUrl)
e Record:

Release date (QDateTime)

Cover image (QString, represents file name)
e 5ong:

Number (int)

Song itself (QString, represents file name)

symbio

67

symbio

Common properties

e All objects have a name (QString)
e All objects must inherit QObject

e (Objects must emit a signal when a property
changes

e Optional

Add base class for common functionality

68

symbio

Optional

e Separate public API and private implementation

e Add functions to get:

All artists, records and songs of music library
All records of artist

All songs of record

69

SERIOUS ABOUT SOFTWARE

........"." .
Y'o o o ¢ 9o @ ... 70

